Skip to main content


  • S. OSTROVSKA (a1) and M. I. OSTROVSKII (a2)

Given a Banach space X and a real number α ≥ 1, we write: (1) D(X) ≤ α if, for any locally finite metric space A, all finite subsets of which admit bilipschitz embeddings into X with distortions ≤ C, the space A itself admits a bilipschitz embedding into X with distortion ≤ α ⋅ C; (2) D(X) = α+ if, for every ϵ > 0, the condition D(X) ≤ α + ϵ holds, while D(X) ≤ α does not; (3) D(X) ≤ α+ if D(X) = α+ or D(X) ≤ α. It is known that D(X) is bounded by a universal constant, but the available estimates for this constant are rather large. The following results have been proved in this work: (1) D((⊕n=1Xn)p) ≤ 1+ for every nested family of finite-dimensional Banach spaces {Xn}n=1 and every 1 ≤ p ≤ ∞. (2) D((⊕n=1n)p) = 1+ for 1 < p < ∞. (3) D(X) ≤ 4+ for every Banach space X with no nontrivial cotype. Statement (3) is a strengthening of the Baudier–Lancien result (2008).

Hide All
1. Baudier, F., Embeddings of proper metric spaces into Banach spaces, Houston J. Math. 38 (1) (2012), 209223.
2. Baudier, F. and Lancien, G., Embeddings of locally finite metric spaces into Banach spaces, Proc. Amer. Math. Soc. 136 (2008), 10291033.
3. Buyalo, S. and Schroeder, V., Elements of asymptotic geometry, EMS monographs in mathematics (European Mathematical Society, Zürich, 2007).
4. Fréchet, M., Les dimensions d'un ensemble abstrait, Math. Ann. 68 (3) (1910), 145168.
5. Kalton, N. J. and Lancien, G., Best constants for Lipschitz embeddings of metric spaces into c 0, Fund. Math. 199 (2008), 249272.
6. Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces. I. Sequence spaces, Ergebnisse der mathematik und ihrer grenzgebiete, vol. 92 (Springer-Verlag, Berlin, 1977).
7. Linial, N., Finite metric spaces–combinatorics, geometry and algorithms, in Proceedings of the International Congress of Mathematicians, vol. III (Higher Education Press, Beijing, 2002), 573–586.
8. Matoušek, J., Lectures on Discrete Geometry, Graduate texts in mathematics, vol. 212. (Springer-Verlag, New York, 2002).
9. Maurey, B. and Pisier, G., Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Stud. Math. 58 (1) (1976), 4590.
10. Naor, A., L 1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry, in Proceedings of the International Congress of Mathematicians, 2010, vol III (Hyderabad, India, 2011), 1549–1575.
11. Naor, A. and Peres, Y., Lp compression, traveling salesmen, and stable walks. Duke Math. J. 157 (1) (2011), 53108.
12. Ostrovskii, M. I., Coarse embeddability into Banach spaces, Topol. Proc. 33 (2009), 163183.
13. Ostrovskii, M. I., Embeddability of locally finite metric spaces into Banach spaces is finitely determined, Proc. Amer. Math. Soc. 140 (2012), 27212730.
14. Ostrovskii, M. I., Metric embeddings: Bilipschitz and coarse embeddings into Banach spaces, de Gruyter studies in mathematics, vol. 49 (Walter de Gruyter & Co., Berlin, 2013).
15. Williamson, D. P. and Shmoys, D. B., The design of approximation algorithms (Cambridge University Press, New York, NY, 2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

MSC classification


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed