No CrossRef data available.
 $$\sum\limits_{l + km = n} {\sigma (l)\sigma (m)} $$ AND
$$\sum\limits_{l + km = n} {\sigma (l)\sigma (m)} $$ AND  $$\sum\limits_{al + bm = n} {\sigma (l)\sigma (m)} $$ FOR k = a · b = 21, 33, AND 35
$$\sum\limits_{al + bm = n} {\sigma (l)\sigma (m)} $$ FOR k = a · b = 21, 33, AND 35Published online by Cambridge University Press: 16 July 2021
The article focuses on the evaluation of convolution sums  $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function
$${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function  $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form
$$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form  $$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$, for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).
$$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$, for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).
 $$\mathop \sum \nolimits_{ _{l + 12m = n}}\sigma (l)\sigma (m)$$ and
$$\mathop \sum \nolimits_{ _{l + 12m = n}}\sigma (l)\sigma (m)$$ and  $$\mathop \sum \nolimits_{ _{3l + 4m = n}}\sigma (l)\sigma (m)$$, Adv. Theor.
 Appl. Math. 1(1) (2006), 27–48.Google Scholar
$$\mathop \sum \nolimits_{ _{3l + 4m = n}}\sigma (l)\sigma (m)$$, Adv. Theor.
 Appl. Math. 1(1) (2006), 27–48.Google Scholar $$\mathop \sum \nolimits_{ _{l + 18m = n}}\sigma (l)\sigma (m)$$ and
$$\mathop \sum \nolimits_{ _{l + 18m = n}}\sigma (l)\sigma (m)$$ and  $$\mathop \sum \nolimits_{ _{2l + 9m = n}}\sigma (l)\sigma (m)$$, Int. Math.
 Forum 2(1–4) (2007), 45–68.Google Scholar
$$\mathop \sum \nolimits_{ _{2l + 9m = n}}\sigma (l)\sigma (m)$$, Int. Math.
 Forum 2(1–4) (2007), 45–68.Google Scholar $$\mathop \sum \nolimits_{ _{l + 24m = n}}\sigma (l)\sigma (m)$$ and
$$\mathop \sum \nolimits_{ _{l + 24m = n}}\sigma (l)\sigma (m)$$ and  $$\mathop \sum \nolimits_{ _{3l + 8m = n}}\sigma (l)\sigma (m)$$, Math. J. Okayama Univ. 49 (2007), 93–111.Google Scholar
$$\mathop \sum \nolimits_{ _{3l + 8m = n}}\sigma (l)\sigma (m)$$, Math. J. Okayama Univ. 49 (2007), 93–111.Google Scholar $$\mathop \sum \nolimits_{ _{m < n/16}}\sigma (m)\sigma (n - 16m)$$, Canad. Math. Bull. 51(1) (2008), 3–14.CrossRefGoogle Scholar
$$\mathop \sum \nolimits_{ _{m < n/16}}\sigma (m)\sigma (n - 16m)$$, Canad. Math. Bull. 51(1) (2008), 3–14.CrossRefGoogle Scholar $$\mathop \sum \nolimits_{ _{l + 27m = n}}\sigma (l)\sigma (m)$$ and
$$\mathop \sum \nolimits_{ _{l + 27m = n}}\sigma (l)\sigma (m)$$ and  $$\mathop \sum \nolimits_{ _{l + 32m = n}}\sigma (l)\sigma (m)$$, Int.
 J. Number Theory 12(1) (2016), 1–13.CrossRefGoogle Scholar
$$\mathop \sum \nolimits_{ _{l + 32m = n}}\sigma (l)\sigma (m)$$, Int.
 J. Number Theory 12(1) (2016), 1–13.CrossRefGoogle Scholar $$\mathop \sum \nolimits_{ _{l + 6m = n}}\sigma (l)\sigma (m)$$ and
$$\mathop \sum \nolimits_{ _{l + 6m = n}}\sigma (l)\sigma (m)$$ and  $$\mathop \sum \nolimits_{ _{2l + 3m = n}}\sigma (l)\sigma (m)$$, J. Number Theory 124(2) (2007), 491–510.CrossRefGoogle Scholar
$$\mathop \sum \nolimits_{ _{2l + 3m = n}}\sigma (l)\sigma (m)$$, J. Number Theory 124(2) (2007), 491–510.CrossRefGoogle Scholar $$1/\pi $$ associated with
$$1/\pi $$ associated with  $${\Gamma _0}(N)$$, where N is a product of two small primes, J. Math. Anal. Appl. 472(2) (2019), 1551–1570.CrossRefGoogle Scholar
$${\Gamma _0}(N)$$, where N is a product of two small primes, J. Math. Anal. Appl. 472(2) (2019), 1551–1570.CrossRefGoogle Scholar $$\mathop \sum \nolimits_{ _{l + 20m = n}}\sigma (l)\sigma (m)$$,
$$\mathop \sum \nolimits_{ _{l + 20m = n}}\sigma (l)\sigma (m)$$,  $$\mathop \sum \nolimits_{ _{4l + 5m = n}}\sigma (l)\sigma (m)$$ and
$$\mathop \sum \nolimits_{ _{4l + 5m = n}}\sigma (l)\sigma (m)$$ and  $$\mathop \sum \nolimits_{ _{2l + 5m = n}}\sigma (l)\sigma (m)$$, Int.
 J. Number Theory 10(6) (2014), 1385–1394.CrossRefGoogle Scholar
$$\mathop \sum \nolimits_{ _{2l + 5m = n}}\sigma (l)\sigma (m)$$, Int.
 J. Number Theory 10(6) (2014), 1385–1394.CrossRefGoogle Scholar $$x_1^2 + {x_1}{x_2} + x_2^2$$, Acta Arith. 54(1) (1989), 9–36.Google Scholar
$$x_1^2 + {x_1}{x_2} + x_2^2$$, Acta Arith. 54(1) (1989), 9–36.Google Scholar $$\mathop \sum \nolimits_{ _{\alpha l + \beta m = n}}\sigma (l)\sigma (m)$$ where
$$\mathop \sum \nolimits_{ _{\alpha l + \beta m = n}}\sigma (l)\sigma (m)$$ where  $$(\alpha ,\beta )$$ is in {(1, 14), (2, 7), (1, 26), (2, 13), (1, 28), (4, 7), (1, 30), (2, 15), (3, 10), (5, 6)}, Master’s Thesis (School of Mathematics and Statistics, Carleton University, 2015).Google Scholar
$$(\alpha ,\beta )$$ is in {(1, 14), (2, 7), (1, 26), (2, 13), (1, 28), (4, 7), (1, 30), (2, 15), (3, 10), (5, 6)}, Master’s Thesis (School of Mathematics and Statistics, Carleton University, 2015).Google Scholar $$\mathop \sum \nolimits_{ _{l + 15m = n}}\sigma (l)\sigma (m)$$ and
$$\mathop \sum \nolimits_{ _{l + 15m = n}}\sigma (l)\sigma (m)$$ and  $$\mathop \sum \nolimits_{ _{3l + 5m = n}}\sigma (l)\sigma (m)$$ and an application, Int.
 J. Number Theory 9(3) (2013), 799–809.CrossRefGoogle Scholar
$$\mathop \sum \nolimits_{ _{3l + 5m = n}}\sigma (l)\sigma (m)$$ and an application, Int.
 J. Number Theory 9(3) (2013), 799–809.CrossRefGoogle Scholar $$\mathop \sum \nolimits_{ _{m < n/9}}\sigma (m)\sigma (n - 9m)$$, Int.
 J. Number Theory 1(2) (2005), 193–205.CrossRefGoogle Scholar
$$\mathop \sum \nolimits_{ _{m < n/9}}\sigma (m)\sigma (n - 9m)$$, Int.
 J. Number Theory 1(2) (2005), 193–205.CrossRefGoogle Scholar $$\mathop \sum \nolimits_{ _{m < n/8}}\sigma (m)\sigma (n - 8m)$$, Pacific J. Math. 228(2) (2006), 387–396.CrossRefGoogle Scholar
$$\mathop \sum \nolimits_{ _{m < n/8}}\sigma (m)\sigma (n - 8m)$$, Pacific J. Math. 228(2) (2006), 387–396.CrossRefGoogle Scholar $$\mathop \sum \nolimits_{ _{i + 25j = n}}\sigma (i)\sigma (j)$$, Int.
 J. Number Theory 10(6) (2014), 1421–1430.CrossRefGoogle Scholar
$$\mathop \sum \nolimits_{ _{i + 25j = n}}\sigma (i)\sigma (j)$$, Int.
 J. Number Theory 10(6) (2014), 1421–1430.CrossRefGoogle Scholar $$\mathop \sum \nolimits_{ _{l + 36m = n}}\sigma (l)\sigma (m)$$ and
$$\mathop \sum \nolimits_{ _{l + 36m = n}}\sigma (l)\sigma (m)$$ and  $$\mathop \sum \nolimits_{ _{4l + 9m = n}}\sigma (l)\sigma (m)$$, Int.
 J. Number Theory 11(1) (2015), 171–183.CrossRefGoogle Scholar
$$\mathop \sum \nolimits_{ _{4l + 9m = n}}\sigma (l)\sigma (m)$$, Int.
 J. Number Theory 11(1) (2015), 171–183.CrossRefGoogle Scholar