No CrossRef data available.
Published online by Cambridge University Press: 26 February 2003
In this paper we consider the integral Volterra operator on the space L^2(0,1). We say that a complex number \lambda is an extended eigenvalue ofV if there exists a nonzero operator X satisfying the equation XV=\lambda VX. We show that the set of extended eigenvalues of V is precisely the interval (0,\infty ) and the corresponding eigenvectors may be chosen to be integral operators as well.