Skip to main content



Suppose we are given complex manifolds X and Y together with substacks $\mathcal{S}$ and $\mathcal{S}'$ of modules over algebras of formal deformation $\mathcal{A}$ on X and $\mathcal{A}'$ on Y, respectively. Also, suppose we are given a functor Φ from the category of open subsets of X to the category of open subsets of Y together with a functor F of prestacks from $\mathcal{S}$ to $\mathcal{S}'\circ\Phi$ . Then we give conditions for the existence of a canonical functor, extension of F to the category of coherent $\mathcal{A}$ -modules such that the cohomology associated to the action of the formal parameter $\hbar$ takes values in $\mathcal{S}$ . We give an explicit construction and prove that when the initial functor F is exact on each open subset, so is its extension. Our construction permits to extend the functors of inverse image, Fourier transform, specialisation and micro-localisation, nearby and vanishing cycles in the framework of $\mathcal{D}[[\hbar]]$ -modules. We also obtain the Cauchy–Kowalewskaia–Kashiwara theorem in the non-characteristic case as well as comparison theorems for regular holonomic $\mathcal{D}[[\hbar]]$ -modules and a coherency criterion for proper direct images of good $\mathcal{D}[[\hbar]]$ -modules.

Hide All
1.Brylinski, J. L., Malgrange, B. and Verdier, J. L., Transformation de Fourier geométrique I, II, C.R. Acad. Sci. 297 (1983), 5558; 303 (1986), 193–198.
2.D'Agnolo, A., Guillermou, S. and Schapira, P., Regular holonomic -modules (RIMS, Kyoto University, 2010).
3.Kashiwara, M., On the holonomic systems of linear differential equations II, Invent. Math. 49 (1978) 121135.
4.Kashiwara, M., Vanishing cycle sheaves and holonomic systems of differential equations, Lecture Notes in Mathematics, vol. 1016 (Springer-Verlag, Berlin, Germany, 1983).
5.Kashiwara, M., -modules and microlocal calculus, Translations of Mathematical Monographs, vol. 217 (American Mathematical Society, Providence, RI, 2003).
6.Kashiwara, M. and Schapira, P., Sheaves on manifolds, Grundlehren der Math. Wiss. vol. 292 (Springer-Verlag, Berlin Germany, 1990).
7.Kashiwara, M. and Schapira, P., Categories and sheaves, Grundlehren der Math. Wiss. vol. 332 (Springer-Verlag, Berlin Germany, 2006).
8.Kashiwara, M. and Schapira, P., Deformation quantization modules, Astérisque (Soc. Math. France) 345 (2012) arXiv:1003.3304v2.
9.Laurent, Y. and Malgrange, B., Cycles proches, spécialisation et -modules, Annales de l'institut Fourier 45 (n5) (1995), 13531405.
10.Laurent, Y. and Schapira, P., Images inverses des modules différentiels, Compositio Math. 61 (1987), 229251.
11.Maisonobe, P. and Mebkhout, Z., Le théorème de comparaison pour les cycles évanescents, Séminaires et Congrès, 8 (2004), 311389 (Societe Mathîmatique de France).
12.Mebkhout, Z., Le formalisme des six opérations de Grothendieck pour les -modules cohérents, III, § 4. (en collaboration avec C. Sabbah; French edn.) Travaux en Cours collection No. 35 (Hermann, Paris, France, 1989).
13.Fernandes, T. Monteiro, Microlocalisation of -modules along a submanifold, Bull. Soc. Math. France 123 (1995), 293327.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 159 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th July 2018. This data will be updated every 24 hours.