No CrossRef data available.
Published online by Cambridge University Press: 20 August 2013
Suppose we are given complex manifolds X and Y together with substacks  $\mathcal{S}$ and
$\mathcal{S}$ and  $\mathcal{S}'$ of modules over algebras of formal deformation
$\mathcal{S}'$ of modules over algebras of formal deformation  $\mathcal{A}$ on X and
$\mathcal{A}$ on X and  $\mathcal{A}'$ on Y, respectively. Also, suppose we are given a functor Φ from the category of open subsets of X to the category of open subsets of Y together with a functor F of prestacks from
$\mathcal{A}'$ on Y, respectively. Also, suppose we are given a functor Φ from the category of open subsets of X to the category of open subsets of Y together with a functor F of prestacks from  $\mathcal{S}$ to
$\mathcal{S}$ to  $\mathcal{S}'\circ\Phi$. Then we give conditions for the existence of a canonical functor, extension of F to the category of coherent
$\mathcal{S}'\circ\Phi$. Then we give conditions for the existence of a canonical functor, extension of F to the category of coherent  $\mathcal{A}$-modules such that the cohomology associated to the action of the formal parameter
$\mathcal{A}$-modules such that the cohomology associated to the action of the formal parameter  $\hbar$ takes values in
$\hbar$ takes values in  $\mathcal{S}$. We give an explicit construction and prove that when the initial functor F is exact on each open subset, so is its extension. Our construction permits to extend the functors of inverse image, Fourier transform, specialisation and micro-localisation, nearby and vanishing cycles in the framework of
$\mathcal{S}$. We give an explicit construction and prove that when the initial functor F is exact on each open subset, so is its extension. Our construction permits to extend the functors of inverse image, Fourier transform, specialisation and micro-localisation, nearby and vanishing cycles in the framework of  $\mathcal{D}[[\hbar]]$-modules. We also obtain the Cauchy–Kowalewskaia–Kashiwara theorem in the non-characteristic case as well as comparison theorems for regular holonomic
$\mathcal{D}[[\hbar]]$-modules. We also obtain the Cauchy–Kowalewskaia–Kashiwara theorem in the non-characteristic case as well as comparison theorems for regular holonomic  $\mathcal{D}[[\hbar]]$-modules and a coherency criterion for proper direct images of good
$\mathcal{D}[[\hbar]]$-modules and a coherency criterion for proper direct images of good  $\mathcal{D}[[\hbar]]$-modules.
$\mathcal{D}[[\hbar]]$-modules.
 $\mathcal{D}[[\hbar]]$-modules (RIMS, Kyoto University, 2010).Google Scholar
$\mathcal{D}[[\hbar]]$-modules (RIMS, Kyoto University, 2010).Google Scholar \it{$\mathcal{D}$-modules and microlocal calculus, Translations of Mathematical Monographs, vol. 217 (American Mathematical Society, Providence, RI, 2003).Google Scholar
\it{$\mathcal{D}$-modules and microlocal calculus, Translations of Mathematical Monographs, vol. 217 (American Mathematical Society, Providence, RI, 2003).Google Scholar $\mathcal{D}$-modules, Annales de l'institut Fourier  45 (n5) (1995), 1353–1405.Google Scholar
$\mathcal{D}$-modules, Annales de l'institut Fourier  45 (n5) (1995), 1353–1405.Google Scholar $\mathcal{D}_X$-modules cohérents, III, § 4. (en collaboration avec C. Sabbah; French edn.) Travaux en Cours collection No. 35 (Hermann, Paris, France, 1989).Google Scholar
$\mathcal{D}_X$-modules cohérents, III, § 4. (en collaboration avec C. Sabbah; French edn.) Travaux en Cours collection No. 35 (Hermann, Paris, France, 1989).Google Scholar $\mathcal{D}$-modules along a submanifold, Bull. Soc. Math. France  123 (1995), 293–327.Google Scholar
$\mathcal{D}$-modules along a submanifold, Bull. Soc. Math. France  123 (1995), 293–327.Google Scholar