Skip to main content


  • M. B. ASADI (a1) (a2), M. FRANK (a3) and Z. HASSANPOUR-YAKHDANI (a4)

We show that if A is a compact C*-algebra without identity that has a faithful *-representation in the C*-algebra of all compact operators on a separable Hilbert space and its multiplier algebra admits a minimal central projection p such that pA is infinite-dimensional, then there exists a Hilbert A 1-module admitting no frames, where A 1 is the unitization of A. In particular, there exists a frame-less Hilbert C*-module over the C*-algebra $K(\ell^2) \dotplus \mathbb{C}I_{\ell^2}$ .

Hide All
1. Arambašić, Lj., Another characterization of Hilbert C*-modules over compact operators, J. Math. Anal. Appl. 344 (2) (2008), 735740.
2. Amini, M., Asadi, M. B., Elliott, G. A. and Khosravi, F., Frames in Hilbert C*-modules and Morita equivalent C*-algebras, Glassgow Math. J. 59 (1) (2017), 110.
3. Arveson, W., An invitation to C*-algebras (Springer, New York, 1976).
4. Bakić, D. and Guljaš, B., Hilbert C*-modules over C*-algebras of compact operators, Acta Sci. Math. (Szeged) 68 (1–2) (2002), 249269.
5. Brown, L. G., Complements to various Stone–Weierstrass theorems for C*-algebras and a theorem of Shultz, Comm. Math. Phys. 143 (2) (1992), 405413.
6. Dixmier, J., C*-algebras (North-Holland Publishing Company, Amsterdam - New York - Oxford, 1977).
7. Elliott, G. A. and Kawamura, K., A Hilbert bundle characterization of Hilbert C*-modules, Trans. Amer. Math. Soc. 360 (9) (2008), 48414862.
8. Frank, M. and Larson, D. R., Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory 48 (2) (2000), 273314.
9. Li, H., A Hilbert C*-module admitting no frames, Bull. London Math. Soc. 42 (3) (2010), 388394.
10. Swan, R. G., Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (2) (1962), 264277.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed