Skip to main content
×
×
Home

FRIEZES, STRINGS AND CLUSTER VARIABLES

  • IBRAHIM ASSEM (a1), GRÉGOIRE DUPONT (a2), RALF SCHIFFLER (a3) and DAVID SMITH (a4)
Abstract

To any walk in a quiver, we associate a Laurent polynomial. When the walk is the string of a string module over a 2-Calabi–Yau tilted algebra, we prove that this Laurent polynomial coincides with the corresponding cluster character of the string module up to an explicit normalising monomial factor.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      FRIEZES, STRINGS AND CLUSTER VARIABLES
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      FRIEZES, STRINGS AND CLUSTER VARIABLES
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      FRIEZES, STRINGS AND CLUSTER VARIABLES
      Available formats
      ×
Copyright
References
Hide All
1.Amiot, C., Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble) 59 (6) (2009), 25252590.
2.Assem, I., Brüstle, T., Charbonneau-Jodoin, G. and Plamondon, P., Gentle algebras arising from surface triangulations, Algebra Number Theory 4 (2) (2010), 201229.
3.Assem, I. and Dupont, G., Friezes and a construction of the euclidean cluster variables, J. Pure and Appl. Algebra 215 (10) (2011), 23222340.
4.Assem, I., Reutenauer, C. and Smith, D., Friezes, Adv. Math. 225 (2010), 31343165.
5.Assem, I., Simson, D. and Skowroński, A., Elements of representation theory of associative algebras, vol. 1: Techniques of representation theory (London Mathematical Society Student Texts, vol. 65) (Cambridge University Press, Cambridge, UK, 2005).
6.Auslander, M., Reiten, I. and Smalø, S., Cambridge studies in advanced mathematics: Vol 36, Representation theory of Artin algebras (Cambridge University Press, Cambridge, UK, 1997). Corrected reprint of the 1995 original.
7.Baur, K. and Marsh, R., Categorification of a frieze pattern determinant. arXiv:1008.5329v1 [math.CO], 2010.
8.Buan, A., Iyama, O., Reiten, I. and Scott, J., Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math. 145 (4) (2009), 10351079.
9.Buan, A., Iyama, O., Reiten, I. and Smith, D., Mutation of cluster-tilting objects and potentials. To appear in American J. Math. arXiv:0804.3813v3 [math.RT], 2009.
10.Buan, A., Marsh, R., Reineke, M., Reiten, I. and Todorov, G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2) (2006), 572618.
11.Buan, A., Marsh, R. and Reiten, I., Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (1) (2007), 323332.
12.Buan, A., Marsh, R. and Reiten, I., Denominators of cluster variables, J. Lond. Math. Soc. (2) 79 (3) (2009), 589611.
13.Butler, M. and Ringel, C. M., Auslander-Reiten sequences with few middle terms and applications to string algebras, Commun. Algebra, 15 (1–2) (1987), 145179.
14.Caldero, P. and Chapoton, F., Cluster algebras as Hall algebras of quiver representations, Commentarii Mathematici Helvetici 81 (2006), 596616.
15.Caldero, P., Chapoton, F. and Schiffler, R., Quivers with relations arising from clusters (A n case), Trans. AMS 358 (2006), 13471354.
16.Caldero, P. and Keller, B., From triangulated categories to cluster algebras II, Annales Scientifiques de l'Ecole Normale Supérieure, 39 (4) (2006), 83100.
17.Caroll, G. and Price, G., The new combinatorial models for the Ptolemy recurrence. unpublished.
18.Irelli, G. Cerulli, Quiver Grassmannians associated with string modules, J. Algebr. Comb. 33 (2) (2011), 259276.
19.Conway, J. and Coxeter, H., Triangulated polygons and frieze patterns, Math. Gaz. 57 (401) (1973), 175183.
20.Conway, J. and Coxeter, H., Triangulated polygons and frieze patterns, Math. Gaz. 57 (400) (1973), 8794.
21.Coxeter, H., Frieze patterns, Acta Arith. 18 (1971), 297310.
22.Derksen, H., Weyman, J. and Zelevinsky, A., Quivers with potentials and their representations. I. Mutations, Selecta Math. (N.S.) 14 (1) (2008), 59119.
23.Dupont, G., Positivity in coefficient-free rank two cluster algebras, Electron. J. Comb. 16 (1) (2009), R98.
24.Dupont, G., Caldero–Keller approach to the denominators of cluster variables, Commun. Algebra 38 (7) (2010), 25382549.
25.Dupont, G., Cluster multiplication in regular components via generalized Chebyshev polynomials, Algebr. Represent. Theory. To appear.
26.Dupont, G., Quantized Chebyshev polynomials and cluster characters with coefficients, J. Algebr. Comb. 31 (4) (2010), 501532.
27.Fomin, S., Shapiro, M. and Thurston, D., Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (1) (2008), 83146.
28.Fomin, S. and Zelevinsky, A., Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497529.
29.Fomin, S. and Zelevinsky, A., Cluster algebras IV: Coefficients, Compos. Math. 143 (1) (2007), 112164.
30.Fordy, A. and Marsh, R., Cluster mutation-periodic quivers and associated Laurent sequences, J. Algebr. Comb. 34 (1) (2011), 1966.
31.Fu, C. and Keller, B., On cluster algebras with coefficients and 2-Calabi-Yau categories, Trans. Amer. Math. Soc. 362 (2010), 859895.
32.Fu, C. and Liu, P., Lifting to cluster-tilting objects in 2-Calabi-Yau triangulated categories, Comm. Algebra 37 (7) (2009), 24102418.
33.Gabriel, P., Auslander–Reiten sequences and representation-finite algebras, In Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), vol. 831 of Lecture Notes in Math. (Springer, Berlin, 1980), 171.
34.Haupt, N., Euler characteristics of quiver Grassmannians and Ringel–Hall algebras of string algebras, Algebra. Represent. Theory. To appear.
35.Keller, B., On triangulated orbit categories, Doc. Math. 10 (2005), 551581.
36.Keller, B. and Van den Bergh, M., Deformed Calabi–Yau completions, J. reine angew. Math. 2011 (654) (2011), 125180.
37.Keller, B. and Reiten, I., Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math. 211 (1) (2007), 123151.
38.Keller, B. and Reiten, I., Acyclic Calabi–Yau categories, Compos. Math. 144 (5) (2008), 13321348.
39.Keller, B. and Scherotzke, S., Linear recurrence relations for cluster variables of affine quivers. arXiv:1004.0613v2 [math.RT], 2010.
40.Labardini-Fragoso, D., Quivers with potentials associated to triangulated surfaces, Proc. London Math. Soc. 98 (3) (2009), 787839.
41.Morier-Genoud, S., Osvienko, V. and Tabachnikov, S., 2-frieze patterns and the cluster structure of the space of polygons. arXiv:1008.3359v2 [math.AG], 2010.
42.Musiker, G., A graph theoretic expansion formula for cluster algebras of classical type, Ann. Comb. 15 (1) (2011), 147184.
43.Musiker, G. and Propp, J., Combinatorial interpretations for rank-two cluster algebras of affine type, Electron. J. Combin. 14 (1) (2007), Research Paper 15, 23 pp. (electronic).
44.Musiker, G., Schiffler, R. and Williams, L., Positivity for cluster algebras from surfaces, Adv. Math. doi:10.1016/j.aim.2011.04.018.
45.Nakajima, H., Quiver varieties and cluster algebras, Kyoto J. Math. 51 (1) (2011), 71126.
46.Palu, Y., Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble) 58 (6) (2008), 22212248.
47.Plamondon, P., Cluster algebras via cluster categories with infinite-dimensional morphism spaces. arXiv:1004.0830v2 [math.RT], 2010.
48.Propp, J., The combinatorics of frieze patterns and Markoff numbers. arXiv:math/0511633v4 [math.CO], 2008.
49.Qin, F., Quantum cluster variables via Serre polynomials. arXiv:1004.4171v2 [math.QA], 2010.
50.Reiten, I., Calabi–Yau categories. Talk at the meeting: Calabi–Yau algebras and N-Koszul algebras (CIRM), 2007.
51.Schiffler, R., On cluster algebras arising from unpunctured surfaces II, Adv. Math. 223 (2010), 18851923.
52.Schiffler, R. and Thomas, H., On cluster algebras arising from unpunctured surfaces, Int. Math. Res. Not. 17 (2009), 31603189.
53.Sherman, P. and Zelevinsky, A., Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J. 4 (2004), 947974.
54.Smith, D., On tilting modules over cluster-tilted algebras, Illinois J. Math. 52 (2008), 12231247.
55.Wald, B. and Waschbüsch, J., Tame biserial algebras, J. Algebra 95 (2) (1985) 480500.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 52 *
Loading metrics...

Abstract views

Total abstract views: 161 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd July 2018. This data will be updated every 24 hours.