Skip to main content
×
Home
    • Aa
    • Aa

HIGHER KOSZUL DUALITY FOR ASSOCIATIVE ALGEBRAS

  • VLADIMIR DOTSENKO (a1) and BRUNO VALLETTE (a2)
Abstract
Abstract

We present a unifying framework for the key concepts and results of higher Koszul duality theory for N-homogeneous algebras: the Koszul complex, the candidate for the space of syzygies and the higher operations on the Yoneda algebra. We give a universal description of the Koszul dual algebra under a new algebraic structure. For that we introduce a general notion: Gröbner bases for algebras over non-symmetric operads.

Copyright
References
Hide All
1. A. Beilinson , V. Ginsburg and V. Schechtman , Koszul duality, J. Geom. Phys. 5 (3) (1988), 317350.

2. R. Berger , Koszulity for non-quadratic algebras, J. Algebra 239 (2) (2001), 705734.

3. R. Berger , M. Dubois-Violette and M. Wambst , Homogeneous algebras, J. Algebra 261 (1) (2003), 172185.

5. G. Bergman , The diamond lemma for ring theory, Adv. Math. 29 (2) (1978), 178218.

6. L. A. Bokut , Imbeddings into simple associative algebras, Algebra i Logika 15 (1976), 117142.

8. A. Conner and P. Goetz , A-infinity algebra structures associated to $\mathcalK_2$ algebras, J. Algebra 337 (1) (2011), 6381.

9. V. Dotsenko and A. Khoroshkin , Gröbner bases for operads, Duke Math. J. 153 (2) (2010), 363396.

10. L. Gerritzen , Tree polynomials and non-associative Gröbner bases, J. Symb. Comp. 41 (2006), 297316.

11. E. L. Green and E. L. Marcos , d-Koszul algebras, 2-d-determined algebras and 2-d-Koszul algebras, J. Pure Appl. Algebra 215 (4) (2011), 439449.

12. J. W. He and D. M. Lu , Higher Koszul algebras and A-infinity algebras, J. Algebra 293 (2) (2005), 335362.

13. E. Hoffbeck , A Poincaré–Birkhoff–Witt criterion for Koszul operads, Manuscripta Math. 131 (1–2) (2010), 87110.

14. D. Husemoller , J. C. Moore and J. Stasheff , Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974), 113185.

15. B. Keller , Introduction to A-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), 135.

18. J.-L. Loday and B. Vallette , Algebraic operads, Grundlehren der Mathematischen Wissenschaften, vol. 346 (Springer-Verlag, Berlin, Germany, 2012).

20. D. M. Lu , J. H. Palmieri , Q. S. Wu and J. J. Zhang, A-infinity structure on Ext-algebras, J. Pure Appl. Algebra 213 (11) (2009), 20172037.

21. J. F. , J. W. He and D. M. Lu , Piecewise–Koszul algebras, Sci. China Ser. A Math. 50 (12) (2007), 17951804.

22. S. B. Priddy , Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 3960.

24. D. G. Quillen , Homotopical algebra, Lecture Notes in Mathematics, No. 43 (Springer-Verlag, Berlin, Germany, 1967).

27. Y. Ye and P. Zhang , Higher Koszul complexes, Sci. China Ser. A 46 (1) (2003), 118128.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 76 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.