Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T18:09:52.875Z Has data issue: false hasContentIssue false

INTEGRABLE LATTICE MAPS: QV, A RATIONAL VERSION OF Q4

Published online by Cambridge University Press:  01 February 2009

CLAUDE M. VIALLET*
Affiliation:
LPTHE, Centre National de la Recherche Scientifique, UPMC Université Paris 06Boîte 126/4 Place Jussieu, F-75252 Paris Cedex 05, France e-mail: viallet@lpthe.jussieu.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe a family of integrable lattice maps related to the known quad maps Q4. The integrability criterion we use is the vanishing of the algebraic entropy. The family has the advantage of being parametrized rationally: all its parameters are unconstrained.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2009

References

REFERENCES

1.Adler, V. E., Bäcklund transformation for the Krichever–Novikov equation, Int. Math. Res. Notices 1 (1998), 14. arXiv:solv-int/9707015.CrossRefGoogle Scholar
2.Adler, V. E., Bobenko, A. I. and Suris, Y. B., Classification of integrable equations on quad-graphs. The consistency approach. Comm. Math. Phys. 233 (3) (2003), 513543. arXiv:nlin.SI/0202024.CrossRefGoogle Scholar
3.Adler, V. E., Bobenko, A. I. and Suris, Y. B., Discrete nonlinear hyperbolic equations. Classification of integrable cases, Funct. Anal. Appl. (to appear). arXiv:0705.1663.Google Scholar
4.Adler, V. E. and Suris, Y. B., Q 4: Integrable master equation related to an elliptic curve, Int. Math. Res. Notices 47 (2004), 25232553. arXiv:nlin.SI/0309030.Google Scholar
5.Bellon, M. and Viallet, C-M., Algebraic Entropy, Comm. Math. Phys. 204 (1999), 425437. chao-dyn/9805006.CrossRefGoogle Scholar
6.Bobenko, A. I. and Suris, Y. B., Integrable systems on quad-graphs, Int. Math. Res. Notices 11 (2002), 573611. arXiv:nlin/0110004v1 [nlin.SI].CrossRefGoogle Scholar
7.Drinfeld, V. G.. On some unsolved problems in quantum group theory. In Quantum groups, volume 1510 of Lecture Notes in Math, pp. 18 (Springer, Berlin, 1992).Google Scholar
8.Falqui, G. and Viallet, C.-M., Singularity, complexity, and quasi–integrability of rational mappings, Comm. Math. Phys. 154 (1993), 111125. hep-th/9212105.CrossRefGoogle Scholar
9.Hietarinta, J., Searching for CAC-maps, J. Nonlinear Math. Phys. 12 (2005), 223230.CrossRefGoogle Scholar
10.Hietarinta, J. and Viallet, C.-M.. On the parametrization of solutions of the Yang–Baxter equations. (q-alg/9504028) (1995). Available from http://arxiv.org/abs/q-alg/9504028.Google Scholar
11.Hietarinta, J. and Viallet, C.-M., Singularity confinement and chaos in discrete systems, Phys. Rev. Lett. 81 (2) (1998), 325328. solv-int/9711014.CrossRefGoogle Scholar
12.Hietarinta, J. and Viallet, C-M., Searching for integrable lattice maps using factorization. P. Phys. A 40 (2007), 1262912643. arXiv:0705.1903.Google Scholar
13.Nijhoff, F., Lax pair for the Adler (lattice Krichever–Novikov) system, Phys. Lett. A 297 (2002), 4958. arXiv:nlin.SI/0110027.CrossRefGoogle Scholar
14.Tongas, A. G.Papageorgiou, V. G., Yang–Baxter maps and multi-field integrable lattice equations, J. Phys. A 40 (2007), 1267712690. arXiv:math/0702577.Google Scholar
15.Tremblay, S., Grammaticos, B. and Ramani, A., Integrable lattice equations and their growth properties. Phys. Lett. A 278 (2001), 319324.CrossRefGoogle Scholar
16.Veselov, A. P., Yang–Baxter maps and integrable dynamics, Phys. Lett. A 314 (2003), 214221.CrossRefGoogle Scholar
17.Viallet, C-M.. Algebraic entropy for lattice equations. Available from http://arxiv.org/abs/math-ph/0609043.Google Scholar