Skip to main content
×
Home
    • Aa
    • Aa

ON GROUPS WITH ALL SUBGROUPS SUBNORMAL OR SOLUBLE OF BOUNDED DERIVED LENGTH

  • KIVANÇ ERSOY (a1), ANTONIO TORTORA (a2) and MARIA TOTA (a2)
Abstract
Abstract

In this paper we deal with locally graded groups whose subgroups are either subnormal or soluble of bounded derived length, say d. In particular, we prove that every locally (soluble-by-finite) group with this property is either soluble or an extension of a soluble group of derived length at most d by a finite group, which fits between a minimal simple group and its automorphism group. We also classify all the finite non-abelian simple groups whose proper subgroups are metabelian.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. A. Aríkan , S. Sezer and H. Smith , On locally finite minimal non-solvable groups, Cent. Eur. J. Math. 8 (2010), 266273.

2. D. M. Bloom , The subgroups of PSL(3, q) for odd q, Trans. Am. Math. Soc. 127 (1967), 150178.

4. C. Casolo , Torsion-free groups in which every subgroup is subnormal, Rend. Circ. Mat. Palermo 50 (2) (2001), 321324.

6. M. R. Dixon and M. J. Evans , Groups with the minimum condition on insoluble subgroups, Arch. Math. 72 (1999), 241251.

8. S. Franciosi , F. de Giovanni and M. L. Newell , Groups with polycyclic non-normal subgroups, Algebra Colloq. 7 (2000), 3342.

9. J. C. Lennox and D. J. S. Robinson , The theory of infinite soluble groups (Oxford University Press, Oxford, UK, 2004).

11. W. Möhres , Torsionsfreie Gruppen, deren Untergruppen alle subnormal sind, Math. Ann. 284 (1989), 245249.

12. W. Möhres , Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind, Arch. Math. 54 (1990), 232235.

13. A. Yu. Olshanskii , Groups of bounded period with subgroups of prime order, Algebra Logic 21 (1982), 369418.

14. D. J. S. Robinson , Finiteness conditions and generalized soluble groups, Part 1 and Part 2 (Springer-Verlag, Berlin, Germany, 1972).

15. J. E. Roseblade , On groups in which every subgroup is subnormal, J. Algebra 2 (1965), 402412.

16. H. Smith , Torsion-free groups with all subgroups subnormal, Arch. Math. 76 (2001), 16.

19. H. Smith , Groups with all subgroups subnormal or nilpotent-by-Chernikov, Rend. Sem. Mat. Univ. Padova 126 (2011), 245253.

20. M. Suzuki , On a class of doubly transitive groups, Ann. Math. 75 (1962), 105145.

21. M. Suzuki , Group theory I (Springer-Verlag, Berlin, Germany, 1982).

22. J. G. Thompson , Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383437.

23. R. A. Wilson , The finite simple groups, Graduate Texts in Mathematics, No. 251 (Springer-Verlag, London, 2009).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 101 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th September 2017. This data will be updated every 24 hours.