Skip to main content
    • Aa
    • Aa



In this paper we deal with locally graded groups whose subgroups are either subnormal or soluble of bounded derived length, say d. In particular, we prove that every locally (soluble-by-finite) group with this property is either soluble or an extension of a soluble group of derived length at most d by a finite group, which fits between a minimal simple group and its automorphism group. We also classify all the finite non-abelian simple groups whose proper subgroups are metabelian.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. A. Aríkan , S. Sezer and H. Smith , On locally finite minimal non-solvable groups, Cent. Eur. J. Math. 8 (2010), 266273.

2. D. M. Bloom , The subgroups of PSL(3, q) for odd q, Trans. Am. Math. Soc. 127 (1967), 150178.

4. C. Casolo , Torsion-free groups in which every subgroup is subnormal, Rend. Circ. Mat. Palermo 50 (2) (2001), 321324.

6. M. R. Dixon and M. J. Evans , Groups with the minimum condition on insoluble subgroups, Arch. Math. 72 (1999), 241251.

8. S. Franciosi , F. de Giovanni and M. L. Newell , Groups with polycyclic non-normal subgroups, Algebra Colloq. 7 (2000), 3342.

9. J. C. Lennox and D. J. S. Robinson , The theory of infinite soluble groups (Oxford University Press, Oxford, UK, 2004).

11. W. Möhres , Torsionsfreie Gruppen, deren Untergruppen alle subnormal sind, Math. Ann. 284 (1989), 245249.

12. W. Möhres , Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind, Arch. Math. 54 (1990), 232235.

13. A. Yu. Olshanskii , Groups of bounded period with subgroups of prime order, Algebra Logic 21 (1982), 369418.

14. D. J. S. Robinson , Finiteness conditions and generalized soluble groups, Part 1 and Part 2 (Springer-Verlag, Berlin, Germany, 1972).

15. J. E. Roseblade , On groups in which every subgroup is subnormal, J. Algebra 2 (1965), 402412.

16. H. Smith , Torsion-free groups with all subgroups subnormal, Arch. Math. 76 (2001), 16.

19. H. Smith , Groups with all subgroups subnormal or nilpotent-by-Chernikov, Rend. Sem. Mat. Univ. Padova 126 (2011), 245253.

20. M. Suzuki , On a class of doubly transitive groups, Ann. Math. 75 (1962), 105145.

21. M. Suzuki , Group theory I (Springer-Verlag, Berlin, Germany, 1982).

22. J. G. Thompson , Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383437.

23. R. A. Wilson , The finite simple groups, Graduate Texts in Mathematics, No. 251 (Springer-Verlag, London, 2009).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 101 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th September 2017. This data will be updated every 24 hours.