Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-s7xmh Total loading time: 0.255 Render date: 2022-01-22T00:48:15.856Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

ON THE DOUBLE TRANSFER AND THE f-INVARIANT

Published online by Cambridge University Press:  30 March 2012

GEOFFREY POWELL*
Affiliation:
Laboratoire Analyse, Géométrie et Applications, UMR 7539, Institut Galilée, Université Paris 13, 93430 Villetaneuse, France e-mail: powell@math.univ-paris13.fr
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is to investigate the algebraic double S1-transfer, in particular the classes in the two-line of the Adams–Novikov spectral sequence which are the image of comodule primitives of the MU-homology of ℂP × ℂP via the algebraic double transfer. These classes are analysed by two related approaches: the first, p-locally for p ≥ 3, by using the morphism induced in MU-homology by the chromatic factorisation of the double transfer map together with the f′-invariant of Behrens (for p ≥ 5) (M. Behrens, Congruences between modular forms given by the divided β-family in homotopy theory, Geom. Topol.13(1) (2009), 319–357). The second approach (after inverting 6) uses the algebraic double transfer and the f-invariant of Laures (G. Laures, The topological q-expansion principle, Topology38(2) (1999), 387–425).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2012

References

1.Baker, A., On the detection of some elements in the image of the double transfer using K(2)-theory, Math. Z. 197 (3) (1988), 439454. MR926851 (89c:55019)CrossRefGoogle Scholar
2.Baker, A., Carlisle, D., Gray, B., Hilditch, S., Ray, N. and Wood, R., On the iterated complex transfer, Math. Z. 199 (2) (1988), 191207. MR958648 (90d:55021)CrossRefGoogle Scholar
3.Baker, A., Clarke, F., Ray, N. and Schwartz, L., On the Kummer congruences and the stable homotopy of BU, Trans. Amer. Math. Soc. 316 (2) (1989), 385432. MR942424 (90c:55003)Google Scholar
4.Behrens, M., Congruences between modular forms given by the divided β family in homotopy theory, Geom. Topol. 13 (1) (2009), 319357. MR2469520 (2009i:55016)CrossRefGoogle Scholar
5.Behrens, M. and Laures, G., β-family congruences and the f-invariant, new topological contexts for Galois theory and algebraic geometry (BIRS 2008), Geom. Topol. Monogr. 16 (2009), 929. (Geom. Topol. Publ., Coventry) MR2544384CrossRefGoogle Scholar
6.Hovey, M. and Strickland, N., Comodules and Landweber exact homology theories, Adv. Math. 192 (2) (2005), 427456. MR2128706 (2006e:55007)CrossRefGoogle Scholar
7.Imaoka, M., Double transfers at the prime 2, Sūrikaisekikenkyūsho Kōkyūroku 838 (1993), 18. (Developments and prospects in algebraic topology (Japanese), Kyoto, Japan). MR1289907Google Scholar
8.Imaoka, M., Factorization of double transfer maps, Osaka J. Math. 30 (4) (1993), 759–769. MR1250782 (95d:55015)Google Scholar
9.Katz, N. M., Higher congruences between modular forms, Ann. Math. 101 (2) (1975), 332367. MR0417059 (54 #5120)CrossRefGoogle Scholar
10.Knapp, K., Some applications of K-theory to framed bordism, e-invariant and the transfer, mimeographed notes (Habilitationschrift, Universität Bonn, Germany, 1979).Google Scholar
11.Knapp, K., Introduction to nonconnective Im(J)-theory, in Handbook of algebraic topology (James, I. M., Editor) (North-Holland, Amsterdam, 1995), 425461. MR1361896 (97a:55016)CrossRefGoogle Scholar
12.Laures, G., The topological q-expansion principle, Topology 38 (2) (1999), 387425. MR1660325 (2000c:55009)CrossRefGoogle Scholar
13.Miller, H., Universal Bernoulli numbers and the S 1-transfer, in Current trends in algebraic topology, Part 2 (London, Ont., 1981), CMS Conference Proceedings, vol. 2, American Mathematical Society, Providence, RI, 1982, pp. 437449. MR686158 (85b:55029)Google Scholar
14.Miller, H., The elliptic character and the Witten genus, Algebraic topology (Proceedings of the International Conference, Evanston, IL, 1988), Contemp. Math. 96 (1989), 281289 (American Mathematical Society, Providence, RI, 1989). MR1022688 (90i:55005)CrossRefGoogle Scholar
15.Miller, H. R., Ravenel, D. C. and Wilson, W. S., Periodic phenomena in the Adams-Novikov spectral sequence, Ann. Math. (2) 106 (3) (1977), 469–516. MR0458423 (56 #16626)CrossRefGoogle Scholar
16.Ravenel, D. C., Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (2) (1984), 351414. MR737778 (85k:55009)CrossRefGoogle Scholar
17.Ravenel, D. C., Complex cobordism and stable homotopy groups of spheres, in Pure and applied mathematics (Ravenel, D. C., Editor), vol. 121 (Academic Press, Orlando, FL, 1986). MR860042 (87j:55003), xx+413.Google Scholar
18.Segal, D. M., The cooperations of MU* (CP ) and MU* (HP ) and the primitive generators, J. Pure Appl. Algebra 14 (3) (1979), 315322. MR533431 (80j:55006)CrossRefGoogle Scholar
19.Switzer, R. M., Algebraic topology—homotopy and homology, in Classics in mathematics (Springer-Verlag, Berlin, Germany, 2002), Reprint of the 1975 original Springer, New York; MR0385836 (52 #6695). 1886843Google Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ON THE DOUBLE TRANSFER AND THE f-INVARIANT
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

ON THE DOUBLE TRANSFER AND THE f-INVARIANT
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

ON THE DOUBLE TRANSFER AND THE f-INVARIANT
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *