No CrossRef data available.
Published online by Cambridge University Press: 10 June 2016
In a previous paper, we studied the homogenized enveloping algebra of the Lie algebra sℓ(2,ℂ) and the homogenized Verma modules. The aim of this paper is to study the homogenization   $\mathcal{O}$  B  of the Bernstein–Gelfand–Gelfand category
 $\mathcal{O}$  B  of the Bernstein–Gelfand–Gelfand category   $\mathcal{O}$  of sℓ(2,ℂ), and to apply the ideas developed jointly with J. Mondragón in our work on Groebner basis algebras, to give the relations between the categories
 $\mathcal{O}$  of sℓ(2,ℂ), and to apply the ideas developed jointly with J. Mondragón in our work on Groebner basis algebras, to give the relations between the categories   $\mathcal{O}$  B  and
 $\mathcal{O}$  B  and   $\mathcal{O}$  as well as, between the derived categories
 $\mathcal{O}$  as well as, between the derived categories   $\mathcal{D}$  b (
 $\mathcal{D}$  b (  $\mathcal{O}$  B ) and
 $\mathcal{O}$  B ) and   $\mathcal{D}$  b (
 $\mathcal{D}$  b (  $\mathcal{O}$ ).
 $\mathcal{O}$ ).
 $\mathfrak{g}$
                     
                  -modules, Funckcional. Anal. i Prilozen. 
               10
               (2) (1976), 1–8.Google Scholar
                        $\mathfrak{g}$
                     
                  -modules, Funckcional. Anal. i Prilozen. 
               10
               (2) (1976), 1–8.Google Scholar $\mathbb{C}$
                     
                  ). Glasgow Math. J. 
               56
               (3) (2014), 551–568.Google Scholar
                        $\mathbb{C}$
                     
                  ). Glasgow Math. J. 
               56
               (3) (2014), 551–568.Google Scholar $\mathbb{C}$
                  
               )-modules, (Imperial College Press, London, 2010).Google Scholar
                     $\mathbb{C}$
                  
               )-modules, (Imperial College Press, London, 2010).Google Scholar