Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T11:14:34.889Z Has data issue: false hasContentIssue false

ON THE RESIDUE OF EISENSTEIN CLASSES OF SIEGEL VARIETIES

Published online by Cambridge University Press:  30 October 2017

FRANCESCO LEMMA*
Affiliation:
Institut mathématique de Jussieu-Paris Rive Gauche, UMR 7586, Bâtiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France e-mail: francesco.lemma@imj-prg.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Eisenstein classes of Siegel varieties are motivic cohomology classes defined as pull-backs by torsion sections of the polylogarithm prosheaf on the universal abelian scheme. By reduction to the Hilbert–Blumenthal case, we prove that the Betti realization of these classes on Siegel varieties of arbitrary genus have non-trivial residue on zero-dimensional strata of the Baily–Borel–Satake compactification. A direct corollary is the non-vanishing of a higher regulator map.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2017 

References

REFERENCES

1. Bannai, K., Kings, G., p-adic elliptic polylogarithm, p-adic Eisenstein series and Katz measure, Am. J. Math. 132 (6) (2010), 16091654.Google Scholar
2. Beilinson, A. and Levin, A., The elliptic polylogarithm, in Motives: Proceedings of Symposia in Pure Mathematics (Jannsen, U., Editor), vol. 55, Part 2 (1994), 123190.Google Scholar
3. Beilinson, A. and Levin, A., The elliptic polylogarithm, preprint version of [2].Google Scholar
4. Birkenhake, C. and Lange, H., Complex abelian varieties, 2nd edition, Grundlehren der mathematischen Wissenschaften, vol. 302 (Springer, Berlin, 2004), xii+635.Google Scholar
5. Blottière, D., Réalisation de Hodge du polylogarithme d'un schéma abélien, J. Inst. Math. Jussieu 8 (1) (2009), 138.Google Scholar
6. Blottière, D., Les classes d'Eisenstein des variétés de Hilbert-Blumenthal, IMRN 17 (2009), 32363263.Google Scholar
7. Borel, A., Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, J. Differ. Geom. 6 (1972), 543560.Google Scholar
8. Burgos, J. I. and Wildeshaus, J., Hodge modules on Shimura varieties and their higher direct images in the Baily-Borel-Satake compactification, Ann. Sci. Ecole Norm. Sup. 37 (3) (2004), 363413.Google Scholar
9. Deninger, C. and Murre, J., Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201219.Google Scholar
10. Kashiwara, M. and Schapira, P., Sheaves on manifolds, A Series of Comprehensive Studies in Mathematics, vol. 292 (Springer-Verlag, Berlin, 1994), x+512.Google Scholar
11. Kings, G., K-theory elements of the polylogarithm of abelian schemes, J. Reine Angew. Math. 517 (1999), 103116.Google Scholar
12. Kings, G., The Tamagawa number conjecture for CM elliptic curves, Invent. Math. 143 (3) (2001), 571627.Google Scholar
13. Laumon, G., Fonctions zêtas des variétés de Siegel de dimension 3, Astérisque 302 (2005), 166.Google Scholar
14. Morel, S., Complexes pondérés sur les compactifications de Baily-Borel-Satake: le cas des variétés de Siegel, J. Am. Math. Soc. 21 (1) (2008), 2361.Google Scholar
15. Pink, R., Arithmetical compactifications of mixed Shimura varieties, PhD Thesis, (Bonn, 1990), available at https://people.math.ethz.ch/~pink/dissertation.html.Google Scholar
16. Van der Geer, G., Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grezgebiete 3, vol. 16 (Springer-Verlag, Berlin, 1988), x+291.Google Scholar
17. Wildeshaus, J., Realization of polylogarithms, LNM, vol. 1650 (Springer, Berlin, 1995), xii+343.Google Scholar