Hostname: page-component-6bb9c88b65-s7dlb Total loading time: 0 Render date: 2025-07-21T04:38:44.573Z Has data issue: false hasContentIssue false

On the structures of the Johnson cokernels of the basis-conjugating automorphism groups of free groups

Published online by Cambridge University Press:  21 July 2025

Naoya Enomoto
Affiliation:
The University of Electro-Communications, Tokyo, 182-8585, Japan
Takao Satoh*
Affiliation:
Department of Mathematics, Faculty of Science Division II, Tokyo University of Science, Tokyo, 162-8601, Japan
*
Corresponding author: Takao Satoh; Email: takao@rs.tus.ac.jp

Abstract

In this article, we study the Johnson homomorphisms of basis-conjugating automorphism groups of free groups. We construct obstructions for the surjectivity of the Johnson homomorphisms. By using it, we determine their cokernels of degree up to four and give further observations for degree greater than four. As applications, we give the affirmative answer to the Andreadakis problem for the basis-conjugating automorphism groups of free groups at degree four. Moreover, we calculate twisted first cohomology groups of the braid-permutation automorphism groups of free groups.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alekseev, A. and Torossian, C., The Kashiwara-Vergne conjecture and Drinfeld’s associators, Ann. Math. 175(2) (2012), 415463.10.4007/annals.2012.175.2.1CrossRefGoogle Scholar
Andreadakis, S., On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. 15(3) (1965), 239268.10.1112/plms/s3-15.1.239CrossRefGoogle Scholar
Artin, E., Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4(1) (1925), 4772.10.1007/BF02950718CrossRefGoogle Scholar
Bachmuth, S., Induced automorphisms of free groups and free metabelian groups, Trans. Amer. Math. Soc. 122(1) (1966), 117.10.1090/S0002-9947-1966-0190212-1CrossRefGoogle Scholar
Bartholdi, L., Automorphisms of free groups I, New York J. Math. 19 (2013), 395421.Google Scholar
Bartholdi, L., Erratum; Automorphisms of free groups I, New York J. Math. 22 (2016), 11351137.Google Scholar
Birman, J. S., Braids, Links and mapping class groups, (Princeton University Press, 1974).Google Scholar
Brownstein, A. and Lee, R., Cohomology of the group of motions of n strings in 3-space, in Mapping class groups and moduli spaces of Riemann surfaces, Contemp. Math., vol. 150 (Amer. Math. Soc., Providence, RI, 1993), 5161.10.1090/conm/150/01285CrossRefGoogle Scholar
Cohen, F. and Pakianathan, J., On automorphism groups of free groups, and Their Nilpotent Quotients, preprint, Unpublished.Google Scholar
Cohen, F. and Pakianathan, J., On subgroups of the automorphism group of a free group and associated, graded Lie algebras, preprint, Unpublished.Google Scholar
Damiani, C., A journey through loop braid groups, Expo. Math. 35 (2017), 252285.10.1016/j.exmath.2016.12.003CrossRefGoogle Scholar
Darné, J., On the stable Andreadakis problem, J. Pure Appl. Algebra 223(12) (2019), 54845525.10.1016/j.jpaa.2019.04.010CrossRefGoogle Scholar
Darné, J., On the Andreadakis problem for subgroups of $IA_n$ , Int.l Math. Res. Not. 19 (2021), 1472014742.10.1093/imrn/rnz237CrossRefGoogle Scholar
Enomoto, N. and Satoh, T., On the derivation algebra of the free Lie algebra and trace maps, Alg. Geom. Top. 11(5) (2011), 28612901.10.2140/agt.2011.11.2861CrossRefGoogle Scholar
Farb, B., Automorphisms of $F_n$ which act trivially on homology, in preparation.Google Scholar
Fenn, R., Rimányi, R. and Rourke, C., The braid-permutation group, Topology 36(1) (1997), 123135.10.1016/0040-9383(95)00072-0CrossRefGoogle Scholar
Hain, R., Infinitesimal presentations of the Torelli group, J. Am. Math. Soc. 10(3) (1997), 597651.10.1090/S0894-0347-97-00235-XCrossRefGoogle Scholar
Hall, M., A basis for free Lie rings and higher commutators in free groups, Proc. Amer. Math. Soc. 1(5) (1950), 575581.10.1090/S0002-9939-1950-0038336-7CrossRefGoogle Scholar
Hall, M., The theory of groups, second ed. (AMS Chelsea Publishing, 1999).Google Scholar
Ibrahim, A., On the andreadakis equality for a subgroup of the mcCool group, preprint, arXiv: 1902.10033v5.Google Scholar
Jensen, C., McCammond, J. and Meier, J., The integral cohomology of the group of loops, Geom. Topol. 10(2) (2006), 759784.10.2140/gt.2006.10.759CrossRefGoogle Scholar
Johnson, D., An abelian quotient of the mapping class group, Mathematshe Annalen 249(3) (1980), 225242.10.1007/BF01363897CrossRefGoogle Scholar
Kawazumi, N., Cohomological aspects of magnus expansions, preprint, arXiv: math.GT/0505497.Google Scholar
Magnus, W., Karras, A. and Solitar, D., Combinatorial group theory, (Interscience Publ, New York, 1966).Google Scholar
McCool, J., On basis-conjugating automorphisms of free groups, Can. J. Math. XXXVIII(6) (1986), 15251529.10.4153/CJM-1986-073-3CrossRefGoogle Scholar
Morita, S., Families of Jacobian manifolds and characteristic classes of surface bundles. I, Ann. Inst. Fourier 39(3) (1989), 777810.10.5802/aif.1188CrossRefGoogle Scholar
Morita, S., Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70(3) (1993), 699726.10.1215/S0012-7094-93-07017-2CrossRefGoogle Scholar
Reutenauer, C., Free Lie algebras, London mathematical society monographs, new series, no. 7, (Oxford University Press, 1993).10.1093/oso/9780198536796.001.0001CrossRefGoogle Scholar
Satoh, T., Twisted first homology groups of the automorphism group of a free group, J. Pure Appl. Algebra 204(2) (2006), 334348.10.1016/j.jpaa.2005.05.001CrossRefGoogle Scholar
Satoh, T., New obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group, J. London Math. Soc. 74(2) 2006), 341360.10.1112/S0024610706022976CrossRefGoogle Scholar
Satoh, T., On the Andreadakis conjecture restricted to the “lower-triangular” automorphism groups of free groups, J. Algebra Appl. 16(5) (2017), 1750099.10.1142/S0219498817500992CrossRefGoogle Scholar
Satoh, T., The cokernel of the Johnson homomorphisms of the automorphism group of a free metabelian group, Trans. Amer. Math. Soc. 361(04) (2009), 20852107.10.1090/S0002-9947-08-04767-3CrossRefGoogle Scholar
Satoh, T., On the fourth Johnson homomorphism of the automorphism group of a free group, J. Algebra 323(12) (2010), 31823201.10.1016/j.jalgebra.2010.04.001CrossRefGoogle Scholar
Satoh, T., On the lower central series of the IA-automorphism group of a free group, J. Pure Appl. Algebra 216(3) (2012), 709717.10.1016/j.jpaa.2011.08.006CrossRefGoogle Scholar
Satoh, T., On the Johnson filtration of the basis-conjugating automorphism group of a free group, Mich. Math. J. 61(1) (2012), 87105.10.1307/mmj/1331222848CrossRefGoogle Scholar
Satoh, T., On the basis-conjugating automorphism groups of free groups and free metabelian groups, Math. Proc. Camb. Phil. Soc. 158(1) (2015), 83109.10.1017/S0305004114000619CrossRefGoogle Scholar
Satoh, T., The third subgroup of the Andreadakis–Johnson filtration of the automorphism group of a free group, J .Group Theory 22(1) (2019), 4161.10.1515/jgth-2018-0037CrossRefGoogle Scholar
Tokuyama, T., On the decomposition rules of tensor products of the representations of the classical Weyl groups, J. Algebra 88(2) (1984), 380394.10.1016/0021-8693(84)90072-3CrossRefGoogle Scholar
Witt, E., Treue darstellung liescher ringe, Journal für die Reine und Angewandte Mathematik 177 (1937), 152160.10.1515/crll.1937.177.152CrossRefGoogle Scholar