Skip to main content
×
Home
    • Aa
    • Aa

Represéntations Galoisiennes paires

  • M.-F. Vignéras (a1)
Abstract

On présente des exemples de représentations de de dimension 2, de déterminant pair, qui sont de type diédral (I) ou de conducteur premier et de type quelconque (II), en imitant la construction de Tate (Serre [11]) de représentations de déterminant impair.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Represéntations Galoisiennes paires
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Represéntations Galoisiennes paires
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Represéntations Galoisiennes paires
      Available formats
      ×
Copyright
References
Hide All
1.Buhler J. P., Icosaedral Representations Springer-Verlag Lecture Notes 654 (1978).
2.Borevich Z. et Chafarevich I., Théorie des nombres (Gauthiers-Villars, 1967).
3.Borel A. et Jacquet H., Automorphic forms and automorphic representations (dans Automorphic Forms, Representations, and L-functions, AMS Proc. of Symp. in Pure Math. vol.XXXIII, part 1, p. 189202 (1979)).
4.Casselman W., GLn dans Algebraic Number Fields, Fröhlich A. (Academic Press 1977).
5.Casselman W., On some results of Atkin-Lehner, Math. Ann. 201 (1973), 301314.
6.Delone B. N. et Faddev D. K., The theory of irrationalities of the third degree Transl. of Math. Mon. vol. 10, AMS (1964).
7.Gelbart S., Automorphic forms on adeles groups (Ann. of Math. Studies, n° 23, Princeton University Press 1975).
8.Godwin H. J., Real quartic fields with small discriminat, J. London Math. Soc. 31 (1956), 478485.
9.Li W., On converse theorems for GL2 and GLi Amer. J. of Math. 103 (1981), 851885.
10.Martinet J., Character Theory and Artin L-functions dans Algebraic Number Fields, Frohlich A. (Academic Press 1977).
11.Serre J-P., Modular forms of weight one and Galois representations dans Algebraic Number Fields, Fröhlich A. (Academic Press 1977).
12.Tunnell J., Artin's conjecture for representations of octaedral type Bull. Amer. Math. Soc. 5 (1981), 173175.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Glasgow Mathematical Journal
  • ISSN: 0017-0895
  • EISSN: 1469-509X
  • URL: /core/journals/glasgow-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 26 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.