No CrossRef data available.
Published online by Cambridge University Press: 30 July 2021
Let $f\,{:}\,(\mathbb R^n,0)\to (\mathbb R,0)$ be an analytic function germ with non-isolated singularities and let
$F\,{:}\, (\mathbb{R}^{1+n},0) \to (\mathbb{R},0)$ be a 1-parameter deformation of f. Let
$ f_t ^{-1}(0) \cap B_\epsilon^n$,
$0 < \vert t \vert \ll \epsilon$, be the “generalized” Milnor fiber of the deformation F. Under some conditions on F, we give a topological degree formula for the Euler characteristic of this fiber. This generalizes a result of Fukui.