Hostname: page-component-76c49bb84f-zv2rg Total loading time: 0 Render date: 2025-07-07T18:38:35.098Z Has data issue: false hasContentIssue false

TRANSFORMATION AND REDUCTION FORMULAE FOR DOUBLE q-SERIES OF TYPE Φ2:1;λ2:0;μ

Published online by Cambridge University Press:  04 December 2009

CANGZHI JIA
Affiliation:
Department of Mathematics, Northeast University, Shenyang 110005, PR China e-mail: cangzhijia@yahoo.com.cn, zhangxdneu@yahoo.com.cn
XIANGDE ZHANG
Affiliation:
Department of Mathematics, Northeast University, Shenyang 110005, PR China e-mail: cangzhijia@yahoo.com.cn, zhangxdneu@yahoo.com.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By applying the Sears non-terminating transformations, we establish four general transformation theorems for double basic hypergeometric series of type Φ2:1;λ2:0;μ. Moreover, several transformation, reduction and summation formulae on the double basic hypergeometric series Φ2:1;22:0;1, Φ2:1;32:0;2 and Φ2:1;42:0;3 are also derived through parameter specialisation.

Information

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2009

References

REFERENCES

1.Chu, W. and Jia, C. Z., Transformation and reduction formulae for double q-Clausen hypergeometric Series, Math. Meth. Appl. Sci. 31 (2008), 117.CrossRefGoogle Scholar
2.Chu, W. and Srivastava, H. M., Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions, J. Comput. Appl. Math. 156 (2003), 355370.CrossRefGoogle Scholar
3.Gasper, G. and Rahman, M., Basic hypergeometric series (Cambridge University Press, Cambridge, UK, 1990).Google Scholar
4.Karlsson, P. W., Two hypergeometric summation formulae related to 9-j coefficients, J. Phys. A: Math. Gen. 27 (1994), 69436945.CrossRefGoogle Scholar
5.Karlsson, P. W., Some formulae for double Clauseian functions, J. Comput. Appl. Math. 118 (2000), 203213.CrossRefGoogle Scholar
6.Pitre, S. N. and Van der Jeugt, J., Transformation and summation formulas for Kampé de Fériet series F 1:10:3(1, 1), J. Math. Anal. Appl. 202 (1996), 121132.CrossRefGoogle Scholar
7.Sighal, R. P., Transformation formulae for the modified Kampé de Fériet function, Math. Student 39 (1972), 189195.Google Scholar
8.Singh, S. P., Certain transformation formulae involving basic hyergeometric functions, J. Math. Phys. Sci. 38 (1994), 189195.Google Scholar
9.Srivastava, H. M. and Karlsson, P. W., Multiple Gaussian hypergeometric series (Halsted Press/Ellis Horwood Limited/John Wiley, Chichester, West Sussex, UK, 1985).Google Scholar
10.Van der Jeugt, J., Transformation formula for a double Clausenian hypergeometric series, its q-analogue, and its invariance group, J. Comput. Appl. Math. 139 (2002), 6573.CrossRefGoogle Scholar
11.Van der Jeugt, J., Pitre, S. N. and Rao, K. Srinivasa, Multiple hypergeometric functions and 9-j coefficients, J. Phys. A: Math. Gen. 27 (1994), 52515264.CrossRefGoogle Scholar
12.Van der Jeugt, J., Pitre, S. N. and Rao, K. Srinivasa, Transformation and summation formulas for double hypergeometric series, J. Comput. Appl. Math. 83 (1997), 185193.CrossRefGoogle Scholar