Skip to main content
×
×
Home

Challenges to the use of BECCS as a keystone technology in pursuit of 1.5⁰C

  • Clair Gough (a1), Samira Garcia-Freites (a1), Christopher Jones (a1), Sarah Mander (a1), Brendan Moore (a2), Cristina Pereira (a2), Mirjam Röder (a1), Naomi Vaughan (a2) and Andrew Welfle (a1)...
Non-technical summary

Biomass energy with carbon capture and storage (BECCS) is represented in many integrated assessment models as a keystone technology in delivering the Paris Agreement on climate change. This paper explores six key challenges in relation to large scale BECCS deployment and considers ways to address these challenges. Research needs to consider how BECCS fits in the context of other mitigation approaches, how it can be accommodated within existing policy drivers and goals, identify where it fits within the wider socioeconomic landscape, and ensure that genuine net negative emissions can be delivered on a global scale.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Challenges to the use of BECCS as a keystone technology in pursuit of 1.5⁰C
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Challenges to the use of BECCS as a keystone technology in pursuit of 1.5⁰C
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Challenges to the use of BECCS as a keystone technology in pursuit of 1.5⁰C
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Author for correspondence: C. Gough, E-mail: Clair.gough@manchester.ac.uk
References
Hide All
1.UNFCCC (2015) Adoption of the Paris Agreement. United Nations Framework Convention on Climate Change FCCC/CP/2015/L.9/Rev.1, 12 December 2015. https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf. Accessed 2 May 2018.
2.Fuss, S, Canadell, JG, Peters, GP, Tavoni, M, Andrew, RM, Ciais, P, Jackson, RB, Jones, CD, Kraxner, F, Nakicenovic, N, Le Quere, C, Raupach, MR, Sharifi, A, Smith, P and Yamagata, Y (2014) Betting on negative emissions. Nature Climate Change 4, 850853.
3.Rogelj, J, Luderer, G, Pietzcker, RC, Kriegler, E, Schaeffer, M, Krey, V and Riahi, R (2015) Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Climate Change 5, 519527.
4.Kemper, J (2015) Biomass and carbon dioxide capture and storage: a review. International Journal of Greenhouse Gas Control 40, 401430.
5.Bauer, N, Calvin, K, Emmerling, J, Fricko, O, Fujimori, S, Hilaire, J, Eom, J, Krey, V, Kriegler, E, Mouratiadou, J, de Boer, H-S., van den Bergi, M, Carrarac, S, Daioglou, V, Drouet, L, Edmonds, JE, Gernaati, D, Havlike, P, Johnsone, N, Klein, D, Kyle, P, Marangoni, G, Masui, T, Pietzcker, RC, Strubegger, M, Wise, M, Riahi, K and van Vuuren, DP (2017) Shared socio-economic pathways of the energy sector – quantifying the narratives. Global Environmental Change 42, 316330.
6.Friedlingstein, P, Solomon, S, Plattner, G-K., Knutti, R, Ciais, P and Raupach, MR (2011) Long-term climate implications of twenty-first century options for carbon dioixde emission mitigation. Nature Climate Change 1, 457461.
7.van Vuuren, DP, Deetman, S, van Vliet, J, van den Berg, M, van Ruijven, BJ and Koelbl, B (2013) The role of negative CO2 emissions for reaching 2 °C: insights from integrated assessment modelling. Climatic Change 118, 1527.
8.van Vuuren, D, Stehfest, E, den Elzen, MJ, Kram, T, van Vliet, J, Deetman, S, Isaac, M, Klein Goldewijk, K, Hof, A, Mendoza Beltran, A, Oostenrijk, R and van Ruijven, B (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Climatic Change 109, 95116.
9.O'Neill, BC, Kriefler, E, Ebi, KL, Kemp-Benedict, E, Riahi, K, Rothman, DS, van Ruijven, BJ, van Vuuren, DP, Birkmann, J, Kok, K, Levy, M and Solecki, W (2017) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change 42, 169180.
10.Vaughan, NE and Gough, C (2016) Expert assessment concludes negative emissions scenarios may not deliver. Environmental Research Letters 11, 095003.
11.Matthews, HD, Gillett, NP, Stott, PA and Zickfeld, K (2009) The proportionality of global warming to cumulative carbon emissions. Nature 459, 829832.
12.Zickfeld, K, Arora, VK and Gillet, NP (2012) Is the climate response to CO2 emissions path dependent? Geophysical Research Letters 39(5), L05703.
13.Jones, CD, Ciais, P, Davis, SJ, Friedlingstein, P, Gasser, T, Peters, GP, Rogelj, J, van Vuuren, DP, Canadell, JG, Cowie, A, Jackson, RB, Jonas, M, Kriegler, E, Littleton, E, Lowe, JA, Milne, J, Shrestha, G, Smith, P, Torvanger, A and Wilstshire, A (2016) Simulating the Earth system response to negative emissions. Environmental Research Letters 11(9), 9501295012.
14.Kriegler, E, Edenhofer, O, Reuster, L, Luderer, G and Klein, D (2013) Is atmospheric carbon dioxide removal a game changer for climate change mitigation? Climatic Change 118, 4557.
15.Preston, CJ (2013) Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. Wiley Interdisciplinary Reviews: Climate Change 4, 2337.
16.Agostini, A, Giuntoli, J and Boulamanti, A (2013) Carbon accounting of forest bioenergy. Conclusions and recommendations from a critical literature review. Joint Research Centre, Institute for Energy and Transport, Luxembourg. p. 88. EUR 25354 EN.
17.Thornley, P, Gilbert, P, Shackley, S and Hammond, J (2015) Maximizing the greenhouse gas reductions from biomass: the role of life cycle assessment. Biomass and Bioenergy 81, 3543.
18.Laganière, J, Paré, D, Thiffault, E and Bernier, PY (2015) Range and uncertainties in estimating delays in greenhouse gas mitigation potential of forest bioenergy sourced from Canadian forests. GCB Bioenergy 9(2), 358369.
19.Röder, M and Thornley, P (2016) Bioenergy as climate change mitigation option within a 2°C target – uncertainties and temporal challenges of bioenergy systems. Energy, Sustainability and Society 6, 17.
20.Röder, M, Whittaker, C and Thornley, P (2015) How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass Bioenergy 79, 5063.
21.McManus, MC and Taylor, CM (2015) The changing nature of life cycle assessment. Biomass and Bioenergy 82, 1326.
22.Whittaker, C, McManus, MC and Hammond, GP (2011) Greenhouse gas reporting for biofuels: a comparison between the RED, RTFO and PAS2050 methodologies. Energy Policy 39, 59505960.
23.Cuellar-Franca, RM and Azapagic, A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. Journal of CO 2 Utilisation 9, 82102.
24.Pehnt, M and Henkel, J (2009) Life cycle assessment of carbon dioxide capture and storage from lignite power plants. International Journal of Greenhouse Gas Control 3, 4966.
25.Schakel, W, Meerman, H, Talaei, A, Ramírez, A and Faaij, A (2014) Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage. Applied Energy 131, 441467.
26.Corti, A and Lombardi, L (2004) Biomass integrated gasification combined cycle with reduced CO2 emissions: performance analysis and life cycle assessment (LCA). Energy 29, 21092124.
27.Carpentieri, M, Corti, A and Lombardi, L (2005) Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal. Energy Conversion and Management 46(11–12), 17901808.
28.Searchinger, T, Heimlich, R, Houghton, RA, Dong, F, Elobeid, AJ, Fabiosa, J, Tokgoz, S, Hayes, D and Yu, T (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 12381241.
29.Slade, R, Bauen, A and Shah, N (2009) The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe. Biotechnology for Biofuels 2(15), doi:10.1186/1754-6834-2-15.
30.Zamagni, A, Guinée, J, Heijungs, R, Masoni, P and Raggi, A (2012) Lights and shadows in consequential LCA. International Journal of Life Cycle Assessment 17, 904918.
31.Suh, S and Yang, Y (2014) On the uncanny capabilities of consequential LCA. International Journal Life Cycle Assessment 19, 1179.
32.Vaughan, NE, Gough, C, Mander, M, Littleton, EW, Welfle, A, Gernaat, DEHJ and van Vuuren, DP (2018) Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environmental Research Letters 13(4), 044014.
33.Röder, M and Thornley, P (2016) Bioenergy as climate change mitigation option within a 2°C target – uncertainties and temporal challenges of bioenergy systems. Energy, Sustainability and Society 6(1), 17.
34.Röder, M, Whittaker, C and Thornley, P (2015) How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass and Bioenergy 79, 5063.
35.Scott, V, Haszeldine, RS, Tett, SFB and Oschlies, A (2015) Fossil fuels in a trillion tonne world. Nature Climate Change 5, 419423.
36.Hoogwijk, M, Faaij, A, van den Broek, R, Berndes, G, Gielen, D and Turkenburg, W (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy 25, 119133.
37.van Vuuren, DP, van Vliet, J and Stehfest, E (2009) Future bio-energy potential under various natural constraints. Energy Policy 37, 42204230.
38.Dowd, A-M and James, M (2014) A social licence for carbon dioxide capture and storage: how engineers and managers describe community relations. Social Epistemology 28, 364384.
39.Hall, N, Lacey, J, Carr-Cornish, S and Dowd, A-M (2015) Social licence to operate: understanding how a concept has been translated into practice in energy industries. Journal of Cleaner Production 86, 301310.
40.IRENA (2016) Remap:Roadmap for a Renewable Energy Future, 2016 Edition, International Renewable Energy Agency (IRENA), Abu Dhabi. www.irena.org/remap. Accessed 7 September 2017.
41.Smith, P, Bustamante, M, Ahammad, H, Clark, H, Dong, EA, Elsiddig, H, Harper, R, House, J, Jafari, M, Masera, O, Mbow, C, Ravindranath, NH, Rice, CW, Robledo Abad, C, Romanovskaya, A, Sperling, F and Tuniello, F (2014) Agriculture, forestry and other land use (AFOLU). In Climate Change 2014, Mitigation. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed Edenhofer, O, Pichs-Madruga, R, Sokona, Y, Farahani, E, Kadner, S, Seyboth, K, Adler, A, Brunner, S, Eickemeier, P, Kriemann, B, Savolainen, J, Schlomer, S, von Stechow, C, Zwickel, T and Minx, J) pp. 799890. Cambridge University Press.
42.IPCC (2014) Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol. Geneva. http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html Accessed 7 September 2017.
43.Beringer, T, Lucht, W and Schaphoff, S (2011) Bioenergy production potential of global biomass plantations under environmental & agricultural constraints. GCB Bioenergy 3, 299312.
44.Berndes, G, Hoogwijk, M and Van Den Broek, R (2003) The contribution of biomass in future global energy supply. Biomass Bioenergy 25, 128.
45.Dornburg, V, Faaij, A, Verweij, P, Langeveld, H, van de Ven, G, Wester, F, Lysen, E, van Egmond, S, Dornburg, V, Faaij, A, Verweij, P, Langeveld, H, van de Ven, G, Wester, F, van Keulen, H, van Diepen, K, Meeusen, M, Banse, M, Ros, J, van Vuuren, D, van den Born, G, van Oorschot, M, Smout, F, van Vliet, J, Aiking, H, Londo, M and Mozaffarian, H (2008) Biomass Assessment: Assessment of Global Biomass Potentials & their Links to Food, Water, Biodiversity, Energy Demand & Economy, Netherlands Research Programme on Scientific Assessment and Policy Analysis for Climate Change (WAB). http://www.pbl.nl/sites/default/files/cms/publicaties/500102012.pdf. Accessed 7 September 2017.
46.Dornburg, V, van Vuuren, D, van de Ven, G, Langeveld, H, Meeusen, M, Banse, M, van Oorschot, M, Ros, J, Jan van den Born, G, Aiking, H, Londo, M, Mozzaffarian, H, Verweij, P, Lysen, E and Faaij, A (2010) Bioenergy revisited: key factors in global potentials of bioenergy. Energy and Environmental Science 3, 258267.
47.Erb, K, Haberl, H, Krausmann, F, Lauk, C, Plutzar, C, Steinberger, J, Müller, C, Bondeau, A, Waha, K and Pollack, G (2009) Eating the planet: feeding & fuelling the world sustainably, fairly & humanely – a scoping study’. Potsdam & Vienna.
48.Field, B, Campbell, J and Lobell, D (2008) Biomass energy: the scale of the potential resource. Trends in Ecology and Evolution 23, 6572.
49.Fischer, G and Schrattenholzer, L (2001) Global bioenergy potentials through 2050. Biomass Bioenergy 20, 151159.
50.Gregg, J and Smith, S (2010) Global and regional potential for bionergy from agricultural and forestry residue biomass. Mitigation and Adaptation Strategies for Global Change 15, 241262.
51.Haberl, H, Erb, K, Krausmann, F, Bondeau, A, Lauk, C, Muller, C, Plutzar, C and Steinberger, J (2011) Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets & yields. Biomass Bioenergy 35, 47534769.
52.Haberl, H, Beringer, T, Bhattacharya, S, Erb, K and Hoogwijk, M (2010) The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability 2, 394403.
53.Hakala, K, Kontturi, M and Pahkala, K (2009) Field biomass as global energy source. Agricultural and Food Science 18, 347365.
54.Hoogwijk, M and Graus, W (2008) Global potential of renewable energy sources: a literature assessment. Ecofys, Utrecht.
55.Lauri, P (2014) Wood biomass energy potential in 2050. Energy Policy 66, 1931.
56.Smeets, E and Faaij, A (2007) Bioenergy potentials from forestry in 2050: an assessment of the drivers that determine the potentials. Climatic Change 81, 353390.
57.Smeets, E, Faaij, A, Lewandowski, I and Turkenburg, W (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Progress in Energy and Combustion Science 33, 56106.
58.WBGU (2008) World in transition – future bioenergy and sustainable land use. German Advisory Council on Global Change, Flagship Report 2008. Earthscan.
59.Welfle, A, Gilbert, P and Thornley, P (2014) Increasing biomass resource availability through supply chain analysis. Biomass Bioenergy 70, 249266.
60.Welfle, A, Gilbert, P and Thornley, P (2014) Securing a bioenergy future without imports. Energy Policy 68, 114.
61.Welfle, A, Gilbert, P, Thornley, P and Stephenson, A (2017) Generating low-carbon heat from biomass: life cycle assessment of bioenergy scenarios. Journal of Cleaner Production 149, 448460.
62.Junginger, M, van Dam, J, Zarrilli, S, Mohamed, F, Marchal, D and Faaij, A (2011) Opportunities and barriers for international bioenergy trade. Energy Policy 39, 20282041.
63.Tomei, J and Helliwell, R (2016) Food versus fuel? Going beyond biofuels. Land Use Policy 56, 320326.
64.Popp, J, Lakner, Z, Harangi-Rákos, M and Fári, M (2014) The effect of bioenergy expansion: food, energy, and environment. Renewable and Sustainable Energy Reviews 32, 559578.
65.Roder, M (2016) More than food or fuel. Stakeholder perceptions of anaerobic digestion and land use; a case study from the United Kingdom. Energy Policy 97, 7381.
66.Fradj, BN, Jayet, PA and Aghajanzadeh-Darzi, P (2016) Competition between food, feed, and (bio)fuel: a supply-side model based assessment at the European scale. Land Use Policy 52, 195205.
67.Vergragt, PJ, Markusson, N and Karlsson, H (2011) Carbon capture and storage, bio-energy with carbon capture and storage, and the escape from the fossil-fuel lock-in. Global Environmental Change 21, 282292.
68.Gough, C and Vaughan, NE (2015) Synthesising existing knowledge on the feasibility of BECCS. Report from the AVOID2 programme. http://avoid-net-uk.cc.ic.ac.uk/wp-content/uploads/delightful-downloads/2015/07/Synthesising-existing-knowledge-on-the-feasibility-of-BECCS-AVOID-2_WPD1a_v1.pdf. Accessed 7 September 2017.
69.European Commission (2010) EU energy trends to 2030: update 2009. Luxembourg: Publications Office of the European Union, ISBN 978-92-79-16191-9 doi:10.2833/21664. https://ec.europa.eu/energy/sites/ener/files/documents/trends_to_2030_update_2009.pdf. Accessed 2 May 2018.
70.European Commission (2014) EU energy, transport and GHG emissions trends to 2030: reference scenario 2013. Luxembourg: Publications Office of the European Union. https://ec.europa.eu/energy/sites/ener/files/documents/20160713%20draft_publication_REF2016_v13.pdf. Accessed 2 May 2018.
71.European Commission (2016) EU reference scenario 2016: energy, transport and GHG emissions – trends to 2050. Luxembourg: Publications Office of the European Union, https://ec.europa.eu/energy/sites/ener/files/documents/20160713%20draft_publication_REF2016_v13.pdf. Accessed 2 May 2018.
72.Tvinnereim, E (2014) The bears are right: why cap-and-trade yields greater emission reductions than expected, and what that means for climate policy. Climatic Change 127, 447461.
73.European Biofuels Technology Platform and Zero Emissions Platform. Biomass with CO2 Capture and Storage (Bio-CCS), the way forward. http://www.etipbioenergy.eu/images/EBTP-ZEP-Report-Bio-CCS-The-Way-Forward.pdf . Accessed 7 September 2017.
74.European Commission (2009) The Promotion of the Use of Energy from Renewable Sources. Brussels. http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0028. Accessed 2 May 2018.
75.European Commission (2009) Communication from the Commission on Sustainability Requirements for the use of Solid & Gaseous Biomass Sources in Electricity, Heating & Cooling. Brussels. http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2010:0011:FIN. Accessed 2 May 2018.
76.FSC (1996) International Standard FSC Principles & Criteria for Forest Stewardship. FSC-STD-01-001 (version 4-0) EN, Forestry Stewardship Council, Bonn, https://es.fsc.org/preview.fsc-std-01-001-version-4-0-inglesa.a-113.pdf. Accessed 2 May 2018.
77.RSPO (2013) Quick Facts, Roundtable on Sustainable Palm Oil. http://www.rspo.org/file/QuickFacts_Feb_2013.pdf. Accessed 7 Septmber 2017.
78.Scarlat, N and Dalleman, J (2011) Recent developments of biofuels/bioenergy sustainability certification: a global overview. Energy Policy 39, 16301646.
79.van Dam, J, Junginger, M and Faaij, A (2010) From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renewable and Sustainable Energy Reviews 14, 24452472.
80.CDB (2010) Strategic Plan for Biodiversity 2011–2020 Including Aichi Biodiversity Targets. https://www.cbd.int/doc/strategic-plan/2011-2020/Aichi-Targets-EN.pdf. Accessed 7 September 2017.
81.Hurtt, GC, Chini, LP, Frolking, S, Betts, RA, Feddema, J, Fischer, G, Fisk, J. P., Hibbard, K, Houghton, RA, Janetos, A, Jones, CD, Kindermann, G, Kinoshita, T, Kees Klein Goldewijk, , Riahi, K, Shevliakova, E, Smith, S, Stehfest, E, Thomson, A, Thornton, P, van Vuuren, DP and Wang, YP (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109, 117161. doi:10.1007/s10584-011-0153-2
82.UNFCCC (2009) Article for the REDD+ mechanism. United Nations Framework Convention on Climate Change, Bonn, Germany. http://unfccc.int/files/kyoto_protocol/application/pdf/papuanewguinea070509.pdf. Accessed 30 March 2017.
83.Strassburg, BB, Rodrigues, AS, Gusti, M, Balmford, A, Fritz, S, Obersteiner, M and Brooks, TM (2012) Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nature Climate Change 2, 350355.
84.Creutzig, F, Ravindranath, NH, Berndes, G, Bolwig, S, Bright, R, Cherubini, F, Chum, H, Corbera, E, Delucchi, M, Faaij, A, Fargione, J, Haberl, H, Heath, G, Lucon, O, Plevin, R, Popp, A, Robledo-Abad, C, Rose, S, Smith, P, Stromman, A, Suh, S and Masera, O (2015) Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916944.
85.Haberl, H (2013) Net land-atmosphere flows of biogenic carbon related to bioenergy: towards an understanding of systemic feedbacks. GCB Bioenergy 5, 351357.
86.Lamers, P and Junginger, M (2013) The ‘debt’ is in the detail: a synthesis of recent temporal forest carbon analyses on woody biomass for e nergy. Biofuels, Bioproducts and Biorefining 7, 373385.
87.Berndes, G, Apt, B, Asikainen, A, Cowi, A, Dale, V, Egnell, G, Linder, M, Marelli, L, Pare, D, Pingoud, K and Yeh, S (2016) Forest biomass, carbon neutrality and climate change mitigation. From science to policy 3. European Forest. ISBN 978-952-5980-28-8 (online) https://steps.ucdavis.edu/wp-content/uploads/2017/05/2016-UCD-ITS-RP-16-35.pdf. Accessed 2 May 2018.
88.Matthews, R, Mortimer, N, Mackie, E, Hatto, C, Evans, A, Mwabonje, O, Randle, T, Rolls, W, Sayce, M and Tubby, I (2014) Carbon impacts of using biomass in bioenergy and other sectors: forests. Forest Research. North Energy Associates Limited. 2011; p. 178. URN 12D/085. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/282812/DECC_carbon_impacts_final_report30th_ January_2014.pdf. Accessed 2 May 2018.
89.Röder, M (2016) More than food or fuel. Stakeholder perceptions of anaerobic digestion and land use; a case study from the United Kingdom. Energy Policy 97, 7381.
90.IPCC (2006) Guidelines for National Greenhouse Gas Inventories. In Agriculture, Forestry and Other Land Use. Geneva.
91.OECD (2013) Glossary of statistical terms, Organisation for Economic Cooperation and Development. https://stats.oecd.org/glossary/detail.asp?ID=285. Accessed 2 May 2018.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Global Sustainability
  • ISSN: -
  • EISSN: 2059-4798
  • URL: /core/journals/global-sustainability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 33
Total number of PDF views: 182 *
Loading metrics...

Abstract views

Total abstract views: 641 *
Loading metrics...

* Views captured on Cambridge Core between 13th June 2018 - 20th July 2018. This data will be updated every 24 hours.