Skip to main content
×
×
Home

The ethics of negative emissions

  • Dominic Lenzi (a1)
Non-technical abstract

Limiting dangerous climate change is widely believed to require negative emissions. This prospect has sparked concerns about whether negative emissions could be scaled up quickly enough, along with concerns about their likely ethical costs. Building upon scenario modelling, this paper examines ethical concerns with negative emissions via the comparison of three alternate climate futures. This paper shows that the severity of concerns depends upon implementation conditions, and especially the extent of deferred mitigation. Negative emissions can be a valuable means of limiting dangerous climate change, or an unjust gamble against the future.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The ethics of negative emissions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The ethics of negative emissions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The ethics of negative emissions
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Author for correspondence: D. Lenzi, E-mail: lenzi@mcc-berlin.net
References
Hide All
1.Fuss, S, Canadell, JG, Peters, GP, Tavoni, M, Andrew, RM, Ciais, P, Jackson, RB, Jones, CD, Kraxner, F, Nakicenovic, N, Le Quéré, C, Raupach, MR, Sharifi, A, Smith, P and Yamagata, Y (2014) Betting on negative emissions. Nature Climate Change 4, 850853.
2.Rogelj, J, Luderer, G, Pietzcker, RC, Kriegler, E, Schaeffer, M, Krey, V and Riahi., K (2015) Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Climate Change 5, 519527.
3.Edenhofer, O, Pichs-Madruga, R, Sokona, Y, Farahani, E, Kadner, S, Seyboth, K, Adler, A, Baum, I, Brunner, S, Eickemeier, P, Kriemann, B, Savolainen, J, Schlömer, S, von Stechow, C, Zwickel, T and Minx, JC (2014) IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. http://www.ipcc.ch/report/ar5/wg3/. Accessed 14 May 2018.
4.UNFCCC (2011) Compilation of economy-wide emission reduction targets to be implemented by Parties included in Annex I to the Convention. https://unfccc.int/resource/docs/2011/cop17/eng/09a01.pdf. Accessed 14 May 2018.
5.Anderson, K and Peters, G (2016) The trouble with negative emissions. Science 354, 182183.
6.Preston, CJ (2012) Engineering the Climate: The Ethics of Solar Radiation Management. Lexington Press.
7.Burns, WCG and Strauss, AL (2013) Climate Change Geoengineering: Philosophical Perspectives, Legal Issues, and Governance Frameworks. Cambridge University Press.
8.Clingerman, F and O'Brien, KJ (2016) Theological and Ethical Perspectives on Climate Engineering: Calming the Storm. Lexington Press.
9.Heyward, C (2013) Situating and abandoning geoengineering: a typology of five responses to dangerous climate change. PS: Political Science & Politics 46, 2327.
10.Barrett, S (2008) The incredible economics of geoengineering. Environmental and Resource Economics 39, 4554.
11.Reynolds, JL, Parker, A and Irvine, P (2016) Five solar geoengineering tropes that have outstayed their welcome. Earths Future 4, 2016EF000416.
12.Caldecott, B, Lomax, G and Workman, M (2015) Stranded Carbon Assets and Negative Emissions Technologies. Oxford University. http://www.smithschool.ox.ac.uk/research/sustainable-finance/publications/Stranded-Carbon-Assets-and-NETs.pdf. Accessed 14 May 2018.
13.Preston, CJ (2013) Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. Wiley Interdisciplinary Reviews: Climate Change 4, 2337.
14.Baatz, C, Heyward, C and Stelzer, H (2016) The ethics of engineering the climate. Environmental Values 25, 15.
15.Preston, CJ (2016) Climate Justice and Geoengineering: Ethics and Policy in the Atmospheric Anthropocene. Rowman and Littlefield.
16.Shue, H (2017) Climate dreaming: negative emissions, risk transfer, and irreversibility. Journal of Human Rights and the Environment 8, 203216.
17.Hale, B and Dilling, L (2011) Geoengineering, ocean fertilization, and the problem of permissible pollution. Science, Technology, & Human Values 36, 190212.
18.Hale, B (2012) Getting the bad out: remediation technologies and respect for others. In The Environment: Philosophy, Science, and Ethics (ed. Kabasenche, WP & O'Rourke, M), pp. 223243. MIT Press.
19.Lawford-Smith, H and Currie, A (2017) Accelerating the carbon cycle: the ethics of enhanced weathering. Biology Letters 13, 16.
20.Morrow, DR and Svoboda, T (2016) Geoengineering and non-ideal theory. Public Affairs Quarterly 30, 83102.
21.Baatz, C and Ott, K (2016) Why aggressive mitigation must be part of any pathway to climate justice. In Climate Justice and Geoengineering: Ethics and Policy in the Atmospheric Anthropocene (ed. Preston, CJ). Rowman and Littlefield.
22.Shepherd, J, Caldeira, K, Cox, P, Haigh, J, Keith, D, Launder, B, Mace, G, MacKerron, G, Pyle, J, Rayner, S, Redgwell, C, Watson, A, Garthwaite, R, Heap, R, Parker, A and Wilsdon, J (2009) Geoengineering the Climate: Science, Governance, and Uncertainty. https://royalsociety.org/~/media/royal_society_content/policy/publications/2009/8693.pdf. Accessed 14 May 2018.
23.Caney, S (2012) Just emissions. Philosophy & Public Affairs 40, 255300.
24.McLaren, D (2016) Framing out justice: the post-politics of climate engineering discourses. In Climate Justice and Geoengineering: Ethics and Policy in the Atmospheric Anthopocene (ed. Preston, CJ). Rowman and Littlefield.
25.Flegal, JA and Gupta, A (2017) Evoking equity as a rationale for solar geoengineering research? Scrutinizing emerging expert visions of equity. International Environmental Agreements: Politics, Law and Economics 18, 4561.
26.Kowarsch, M and Edenhofer, O (2018) Principles or Pathways? Improving the Contribution of Philosophical Ethics to Climate Policy. In Climate Justice in a Non-Ideal World (ed. Heyward, C & Roser, D), pp. 296318. Oxford University Press.
27.Crutzen, PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?. Climatic Change 77, 211219.
28.Lawrence, MG (2006) The geoengineering dilemma: to speak or not to speak. Climatic Change 77, 245248.
29.Schneider, SH (1996) Geoengineering: could – or should – we do it?. Climatic Change 33, 291302.
30.Keith, DW (2000) Geoengineering the climate: history and prospect. Annual Review of Energy and the Environment 25, 245284.
31.Hale, B (2012) The World that Would Have Been: Moral Hazard Arguments Against Geoengineering. In Engineering the Climate: The Ethics of Solar Radiation Management (ed. Preston, CJ), pp. 113131. Lexington Press.
32.Betz, G and Cacean, S (2012) Ethical Aspects of Climate Engineering. Karlsruhe Institut für Technologie.
33.Morrow, DR (2014) Ethical aspects of the mitigation obstruction argument against climate engineering research. Philosophical Transactions of the Royal Society A 372, 114.
34.Keith, D (2013) A Case for Climate Engineering. MIT Press.
35.Reynolds, J (2015) A critical examination of the climate engineering moral hazard and risk compensation concern. The Anthropocene Review 2, 174191.
36.Azar, C, Lindgren, K, Larson, E and Möllersten, K (2006) Carbon capture and storage from fossil fuels and biomass – costs and potential role in stabilizing the atmosphere. Climatic Change 74(1–3), 4779.
37.Kriegler, E, Edenhofer, O, Reuster, L, Luderer, G and Klein, D (2013) Is atmospheric carbon dioxide removal a game changer for climate change mitigation?. Climatic Change 118, 4557.
38.Calvin, K, Edmonds, J, Bond-Lamberty, B, Clarke, L, Kim, SH, Kyle, P, Smith, SJ, Thomson, A and Wise, M (2009) 2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energy Economics 31(Supplement 2), S107S120.
39.Rao, S and Riahi, K (2006) The role of non-CO3 greenhouse gases in climate change mitigation: long-term scenarios for the 21st century. Energy Journal 27(Special Issue: Multi-Greenhouse Gas Mitigation and Climate Policy), 177200.
40.Clarke, L, Edmonds, J, Krey, V, Richels, R, Rose, S and Tavoni, M (2009) International climate policy architectures: overview of the EMF 22 International Scenarios. Energy Economics 31(Supplement 2), S64S81.
41.Riahi, K, van Vuuren, DP, Kriegler, E, Edmonds, J, O'Neill, BC, Fujimori, S, Bauer, N, Calvin, K, Dellink, R, Fricko, O, Lutz, W, Popp, A, Cuaresma, JC, Samir, KC, Leimbach, M, Jiang, L, Kram, T, Rao, S, Emmerling, J, Ebi, K, Hasegawa, T, Havlik, P, Humpenöder, F, Da Silva, LA, Smith, S, Stehfest, E, Bosetti, V, Eom, J, Gernaat, D, Masui, T, Rogelj, J, Strefler, J, Drouet, L, Krey, V, Luderer, G, Harmsen, M, Takahashi, K, Baumstark, L, Doelman, JC, Kainuma, M, Klimont, Z, Marangoni, G, Lotze-Campen, H, Obersteiner, M, Tabeau, A and Tavoni, M (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environmental Change 42, 153168.
42.Lackner, KS, Aines, R, Atkins, S, Atkisson, A, Barrett, S, Barteau, M, Braun, RJ, Brouwer, J, Broecker, W, Browne, JB, Darton, R, Deich, N, Edmonds, J, Eisenberger, P, Fennell, PS, Flynn, P, Fox, T, Friedmann, SJ, Gerrard, M, Gibbins, J, van der Giesen, C, Goldberg, DS, Graves, C, Gupta, RHanemann, M, Keith, D, Kleijn, R, Kramer, GJ, Kruger, T, Mazzotti, M, Meinrenken, CJ, Palmore, GTR, Park, A-H, Putnam, A, Rao, V, Rau, GH, Rayner, S, Rittman, BE, Sachs, JD, Sarewitz, D, Schlosser, P, Severinghaus, JP, Stechel, EB, Steinfeld, A, Thomas, CE and Turkenburg, WC (2016) The promise of negative emissions. Science 354, 714.
43.Hamilton, C (2013) Earthmasters. Yale University Press.
44.Corner, A and Pidgeon, N (2015) Like artificial trees? The effect of framing by natural analogy on public perceptions of geoengineering. Climatic Change 130, 425438.
45.Corner, A and Pidgeon, N (2014) Geoengineering, climate change scepticism and the ‘moral hazard’ argument: an experimental study of UK public perceptions. Philosophical Transactions of the Royal Society 372, 20140063.
46.Gardiner, SM (2010) Is ‘arming the future’ with geoengineering really the lesser evil? In Climate Ethics: Essential Readings (ed. Gardiner, S, Caney, S, Jamieson, D & Shue, H), pp. 284312. Oxford University Press.
47.Gardiner, SM (2011) A Perfect Moral Storm: the Ethical Tragedy of Climate Change. Oxford University Press.
48.Smith, P, Davis, SJ, Creutzig, F, Fuss, S, Minx, J, Gabrielle, B, Kato, E, Jackson, RB, Cowie, A, Kriegler, E, van Vuuren, DP, Rogelj, J, Ciais, P, Milne, J, Canadell, JG, McCollum, D, Peters, G, Andrew, R, Krey, V, Shrestha, G, Friedlingstein, P, Gasser, T, Grübler, A, Heidug, WK, Jonas, M, Jones, CD, Kraxner, F, Littleton, E, Lowe, J, Moreira, JR, Nakicenovic, N, Obersteiner, M, Patwardhan, A, Rogner, M, Rubin, E, Sharifi, A, Torvanger, A, Yamagata, Y, Edmonds, J and Yongsung, C (2016) Biophysical and economic limits to negative CO2 emissions. Nature Climate Change 6, 4250.
49.Anderson, K (2015) Duality in climate science. Nature Geoscience 8, 898900.
50.Geden, O (2015) Policy: climate advisers must maintain integrity. Nature News 521, 27.
51.van Vuuren, DP, Hof, AF, van Sluisveld, MAE and Riahi, K (2017) Open discussion of negative emissions is urgently needed. Nature Energy 2, 902.
52.Vaughan, NE and Gough, C (2016) Expert assessment concludes negative emissions scenarios may not deliver. Environmental Research Letters 11, 095003.
53.Rayner, S (2010) Trust and the transformation of energy systems. Energy Policy 38, 26172623.
54.Minx, JC, Lamb, WF, Callaghan, MW, Fuss, S, Hilaire, J, Creutzig, F, Amann, T, Beringer, T, de Oliveira Garcia, W, Hartmann, J, Khanna, T, Lenzi, D, Luderer, G, Nemet, G, Rogelj, J, Smith, P, Vicente Vicente, J, Wilcox, J and del Mar Zamora, M Negative Emissions: Part 1 – research landscape and synthesis. Environmental Research Letters (forthcoming).
55.Socolow, RH (2012) Truths we must tell ourselves to manage climate change. Vanderbilt Law Review 65, 14551478.
56.Creutzig, F, Ravindranath, NH, Berndes, G, Bolwig, S, Bright, R, Cherubini, F, Chum, H, Corbera, E, Delucchi, M, Faaij, A, Fargione, J, Haberl, H, Heath, G, Lucon, O, Plevin, R, Popp, A, Robledo-Abad, C, Rose, S, Smith, P, Stromman, A, Suh, S and Masera, O (2015) Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916944.
57.Rose, SK, Kriegler, E, Bibas, R, Calvin, K, Popp, A, van Vuuren, DP and Weyant, J (2014) Bioenergy in energy transformation and climate management. Climatic Change 123(3–4), 477493.
58.International Maritime Organization. (2013) Report of the Thirty-Fifth Consultative Meeting and the Eighth Meeting of Contracting Parties. https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/report_of_the_thirty-fifth_consultative_meeting_london_convention_2013_10_21.pdf. Accessed 14 May 2018.
59.National Research Council. (2015) Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. https://www.nap.edu/catalog/18805/climate-intervention-carbon-dioxide-removal-and-reliable-sequestration. Accessed 14 May 2018.
60.Jamieson, D (1996) Ethics and intentional climate change. Climatic Change 33, 323336.
61.White, L (1967) The historical roots of our ecologic crisis. Science 155(3767), 12031207.
62.Crutzen, PJ (2002) Geology of mankind. Nature 415, 23.
63.Fleming, JR (2010) Fixing the Sky: the Checkered History of Weather and Climate Control. Columbia University Press.
64.Keller, DP, Lenton, A, Scott, V, Vaughan, NE, Bauer, N, Ji, D, Jones, CD, Kravitz, B, Muri, H and Zickfeld, K (2018) The carbon dioxide removal model intercomparison project (CDRMIP): rationale and experimental protocol for CMIP6. Geoscientific Model Development 11, 11331160.
65.Krausmann, F, Erb, K-H, Gingrich, S, Haberl, H, Bondeau, A, Gaube, V, Lauk, C, Plutzar, C and Searchinger, TD (2013) Global human appropriation of net primary production doubled in the 20th century. Proceedings of the National Academy of Sciences of the United States of America 110, 1032410329.
66.O'Neill, BC, Kriegler, E, Ebi, KL, Kemp-Benedict, E, Riahi, K, Rothman, DS, van Ruijven, BJ, van Vuuren, DP, Birkmann, J, Kok, K, Levy, M and Solecki, W (2017) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change 42, 169180.
67.Moss, RH, Edmonds, JA, Hibbard, KA, Manning, MR, Rose, SK, van Vuuren, DP, Carter, TR, Emori, S, Kainuma, M, Kram, T, Meehl, GA, Mitchell, JFB, Nakicenovic, N, Riahi, K, Smith, SJ, Stouffer, RJ, Thomson, AM, Weyant, JP and Wilbanks, TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463, 747756.
68.Bauer, N, Calvin, K, Emmerling, J, Fricko, O, Fujimori, S, Hilaire, J, Eom, J, Krey, V, Kriegler, E, Mouratiadou, I, Sytze de Boer, H, van den Berg, M, Carrara, S, Daioglou, V, Drouet, L, Edmonds, JE, Gernaat, D, Havlik, P, Johnson, N, Klein, D, Kyle, P, Marangoni, G, Masui, T, Pietzcker, RC, Strubegger, M, Wise, M, Riahi, K and van Vuuren, DP (2017) Shared socio-economic pathways of the energy sector – quantifying the narratives. Global Environmental Change 42, 316330.
69.Kriegler, E, Bauer, N, Popp, A, Humpenöder, F, Leimbach, M, Strefler, J, Baumstark, L, Bodirsky, BL, Hilaire, J, Klein, D, Mouratiadou, I, Weindl, I, Bertram, C, Dietrich, J-P, Luderer, G, Pehl, M, Pietzcker, R, Piontek, F, Lotze-Campen, H, Biewald, A, Bonsch, M, Giannousakis, A, Kreidenweis, U, Müller, C, Rolinski, S, Schultes, A, Schwanitz, J, Stevanovic, M, Calvin, K, Emmerling, J, Fujimori, S and Edenhofer, O (2017) Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Global Environmental Change 42, 297315.
70.Lenton, TM, Held, H, Kriegler, E, Hall, JW, Lucht, W, Rahmstorf, S and Schellnhuber, HJ (2008) Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences of the United States of America 105, 17861793.
71.Alvaredo, F, Chancel, L, Piketty, T, Saez, E and Zucman, G (2018) World Inequality Report http://wir2018.wid.world/files/download/wir2018-full-report-english.pdf. Accessed 14 May 2018.
72.Calvin, K, Bond-Lamberty, B, Clarke, L, Edmonds, J, Eom, J, Hartin, C, Kim, S, Kyle, P, Link, R, Moss, R, McJeon, H, Patel, P, Smith, S, Waldhoff, S and Wise, M (2017) The SSP4: a world of deepening inequality. Global Environmental Change 42, 284296.
73.Gomiero, T, Paoletti, MG and Pimentel, D (2010) Biofuels: efficiency, ethics, and limits to human appropriation of ecosystem services. Journal of Agricultural and Environmental Ethics 23, 403434.
74.van Vuuren, DP, Stehfest, E, Gernaat, DEHJ, Doelman, JC, van den Berg, M, Harmsen, M, de Boer, HS, Bouwman, LF, Daioglou, V, Edelenbosch, OY, Girod, B, Kram, T, Lassaletta, L, Lucas, PL, van Meijl, H, Müller, C, van Ruijven, BJ, van der Sluis, S and Tabeau, A (2017) Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change 42, 237250.
75.Fricko, O, Havlik, P, Rogelj, J, Klimont, Z, Gusti, M, Johnson, N, Kolp, P, Strubegger, M, Valin, H, Amann, M, Ermolieva, T, Forsell, N, Herrero, M, Heyes, C, Kindermann, G, Krey, V, McCollum, DL, Obersteiner, M, Pachauri, S, Rao, S, Schmid, E, Schoepp, W and Riahi, K (2017) The marker quantification of the shared socioeconomic pathway 2: a middle-of-the-road scenario for the 21st century. Global Environmental Change 42, 251267.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Global Sustainability
  • ISSN: -
  • EISSN: 2059-4798
  • URL: /core/journals/global-sustainability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed