Skip to main content Accessibility help
×
×
Home

Viewpoint: Back to the future for fisheries, where will we choose to go?

  • Dirk Zeller (a1) and Daniel Pauly (a2)

Abstract

We present a view on global marine fisheries that emphasizes mitigating the conflict between sustainability and the scale of industrial exploitation driven by the demand of continuous economic growth. We then summarize the current state of global fisheries. Finally, we advocate strongly for scaling back industrial fisheries, most of which are non-sustainable. This can be achieved through eliminating the harmful, capacity-enhancing subsidies that prop up industrial fisheries to continue operating despite declining fish stocks. Instead, we propose to support well-managed, locally owned and operated small-scale fisheries, which generally contribute more to local employment and food security. We stress that contrary to deep-seated opinion in the fishing industry and among politicians, reducing overfishing by eliminating overcapacity in fishing fleets will actually lead to greater, not reduced catches. This would address part of the increased global seafood demand over the coming decades, which is driven by population and wealth growth. This seems counterintuitive, but is supported by fisheries science, data and experiences. Thankfully, we are beginning to see that some of these changes are being pursued by a growing number of countries and international institutions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Viewpoint: Back to the future for fisheries, where will we choose to go?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Viewpoint: Back to the future for fisheries, where will we choose to go?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Viewpoint: Back to the future for fisheries, where will we choose to go?
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

Author for correspondence: Dirk Zeller, E-mail: dirk.zeller@uwa.edu.au

References

Hide All
Agnew, D. J. (2000). The illegal and unregulated fishery for toothfish in the Southern Ocean, and the CCAMLR catch documentation scheme. Marine Policy, 24(5), 361374.
Agnew, D. J., Pearce, J., Pramod, G., Peatman, T., Watson, R., Beddington, J., & Pitcher, T. J. (2009). Estimating the worldwide extent of illegal fishing. PLoS ONE, 4, e4570.
Ainley, D. G., & Pauly, D. (2014). Fishing down the food web of the Antarctic continental shelf and slope. Polar Record, 50(1), 97107.
Al-Abdulrazzak, D., & Pauly, D. (2014). Ground-truthing the ground-truth: reply to Garibaldi et al.’s comment on “Managing fisheries from space: Google Earth improves estimates of distant fish catches”. ICES Journal of Marine Science, 71(7), 19271931.
Alverson, F. G. (1963). The food of yellowfin and skipjack tunas in the eastern tropical Pacific Ocean. Inter-American Tropical Tuna Commission Bulletin, 7(5), 293396.
Barrett, C. B. (2010). Measuring food insecurity. Science, 327(5967), 825828.
Battaglia, P., Andaloro, F., Consoli, P., Esposito, V., Malara, D., Musolino, S., … Romeo, T. (2013). Feeding habits of the Atlantic bluefin tuna, Thunnus thynnus (L. 1758), in the central Mediterranean Sea (Strait of Messina). Helgoland Marine Research, 67(1), 97107.
Belhabib, D., Koutob, V., Sall, A., Lam, V. W. Y., Zeller, D., & Pauly, D. (2015). Counting pirogues and missing the boat: Reply to Chaboud et al.’s comment on Belhabib et al. “Fisheries catch misreporting and its implications: the case of Senegal”. Fisheries Research, 164, 325328.
Belhabib, D., Sumaila, U. R., Lam, V., Zeller, D., Le Billon, P., Kane, E. A., & Pauly, D. (2015). Euros vs. Yuan: Comparing European and Chinese fishing access in West Africa. PLoS ONE, 10(3), e0118351.
Bonfil, R., Munro, G., Sumaila, U. R., Valtysson, H., Wright, M., Pitcher, T., … Pauly, D. (1998). Impacts of distant water fleets: an ecological, economic and social assessment. In WWF (ed.), The Footprint of Distant Water Fleet on World Fisheries (pp. 11111). [Also issued separately, with same title, as Bonfil et al. (eds) (1998) Fisheries Centre Research Reports 6(6), University of British Columbia, 111 pp.]. Endangered Seas Campaign, WWF International.
Cashion, T., Al-Abdulrazzak, D., Belhabib, D., Derrick, B., Divovich, E., Moutopoulos, D. K., … Pauly, D. (2018). Reconstructing global marine fishing gear use: Catches and landed values by gear type and sector. Fisheries Research, 206, 5764.
Cashion, T., Glaser, S., Persson, L., Roberts, P. M., & Zeller, D. (2018). Fisheries in Somali waters: Reconstruction of domestic and foreign catches for 1950–2015. Marine Policy, 87(C), 275283.
Cashion, T., Le Manach, F., Zeller, D., & Pauly, D. (2017). Most fish destined for fishmeal production are food-grade fish. Fish and Fisheries, 18(5), 837844.
Chaboud, C., Fall, M., Ferraris, J., Fontana, A., Fonteneau, A., Laloë, F., … Thiao, D. (2015). Comment on “Fisheries catch misreporting and its implications: The case of Senegal”. Fisheries Research, 164, 322324.
Chuenpagdee, R., & Pauly, D. (2008). Small is beautiful? A database approach for global assessment of small-scale fisheries: preliminary results and hypotheses. In Nielsen, J. L., Dodson, J. J., Friedland, K., Hamon, T. R., Musick, J., & Vespoor, E. (eds), Reconciling Fisheries with Conservation: Proceedings of the Fourth World Fisheries Congress (pp. 575584). American Fisheries Society.
Devine, J. A., Baker, K. D., & Haedrich, R. L. (2006). Deep-sea fishes qualify as endangered. Nature, 439, 29.
Edgar, G. J., Ward, T. J., & Stuart-Smith, R. D. (2018). Rapid declines across Australian fishery stocks indicate global sustainability targets will not be achieved without an expanded network of ‘no-fishing’ reserves. Aquatic Conservation: Marine and Freshwater Ecosystems, 28, 13371350.
FAO (2015). Voluntary Guidelines for Securing Sustainable Small-Scale Fisheries in the Context of Food Security and Poverty Eradication. Food and Agriculture Organization of the United Nations.
FAO (2016). The State of World Fisheries and Aquaculture 2016 (SOFIA): Contributing to Food Security and Nutrition for All. Food and Agriculture Organization of the United Nations.
FAO (2018). The State of World Fisheries and Aquaculture (SOFIA) – Meeting the Sustainable Development Goals. Food and Agriculture Organization of the United Nations.
Froese, R., Demirel, N., Coro, G., Kleisner, K. M., & Winker, H. (2017). Estimating fisheries reference points from catch and resilience. Fish and Fisheries, 18(3), 506526.
Froese, R., & Pauly, D. (eds) (2000). FishBase 2000: Concepts, Design and data sources. ICLARM (updates available at www.fishbase.org).
Froese, R., & Pauly, D. (eds) (2017). FishBase. Retrieved from www.fishbase.org.
Froese, R., Winker, H., Coro, G., Demirel, N., Tsikliras, A. C., Dimarchopoulou, D., … Pauly, D. (2018). A new approach for estimating stock status from length frequency data. ICES Journal of Marine Science, 75(6), 20042015.
Garibaldi, L., Gee, J., Tsuji, S., Mannini, P., & Currie, D. (2014). Comment on: “Managing fisheries from space: Google Earth improves estimates of distant fish catches” by Al-Abdulrazzak and Pauly. ICES Journal of Marine Science, 71(7), 19211926.
Gillett, R. (2007). A Short History of Industrial Fishing in the Pacific Islands. Asia-Pacific Fishery Commission, Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific.
Golden, C. D., Allison, E., Cheung, W. W. L., Dey, M., Halpern, B., McCauley, D. J., … Myers, S. S. (2016). Nutrition: Fall in fish catch threatens human health. Nature, 534, 317320.
Golden, C. D., Chen, O. L., Cheung, W. W. L., Dey, M., Halpern, B., McCauley, D. J., … Allison, E. (2016). Reply to Belton et al.: Are farmed fish just for wealthy markets? Nature, 538, 171.
Greer, K. (2014). Considering the ‘Effort Factor’ in Fisheries: A Methodology for Reconstructing Global Fishing Effort and CO2 Emissions, 1950–2010 (Master of Science). University of British Columbia.
Greer, K., Zeller, D., Woroniak, J., Coulter, A., Palomares, M. L. D., & Pauly, D. (2019a). Global trends in carbon dioxide (CO2) emissions from fuel combustion in marine fisheries from 1950–2016. Marine Policy, in press.
Greer, K., Zeller, D., Woroniak, J., Coulter, A., Palomares, M. L. D., & Pauly, D. (2019b). Reply to Ziegler et al. “Adding perspectives to: Global trends in carbon dioxide (CO2) emissions from fuel combustion in marine fisheries from 1950–2016” and addressing concerns of using fishing effort to predict carbon dioxide emissions. Marine Policy, in press.
Gulland, J. A. (1971). The Fish Resources of the Oceans. FAO/Fishing New Books.
Hilborn, R., & Walters, C. J. (1992). Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (1st ed. Vol. 1). Chapman & Hall.
Holbrook Smith, L. (2017). To accede or not to accede: An analysis of the current US position related to the United Nations law of the sea. Marine Policy, 83, 184193.
HSP (2018). Commonwealth Fisheries Harvest Strategy Policy. Department of Agriculture and Water Resources, Australian Government.
ICES (2014). Report of the Workshop on the Development of Quantitative Assessment Methodologies Based on Life-history Traits, Exploitation Characteristics, and Other Relevant Parameters for Data-limited Stocks (WKLIFE IV), 27–31 October 2014, Lisbon, Portugal. International Council for the Exploration of the Sea.
ICES (2015). Report of the Fifth Workshop on the Development of Quantitative Assessment Methodologies Based on Life-history Traits, Exploitation Characteristics, and Other Relevant Parameters for Data-limited Stocks (WKLIFE V), 5–9 October 2015, Lisbon, Portugal. International Council for the Exploration of the Sea.
Jacquet, J., & Pauly, D. (2008). Funding priorities: Big barriers to small-scale fisheries. Conservation Biology, 22(4), 832835.
Kaczynski, V. M., & Fluharty, D. L. (2002). European policies in West Africa: Who benefits from fisheries agreements? Marine Policy, 26, 7593.
Karakulak, F. S., Salman, A., & Oray, I. K. (2009). Diet composition of bluefin tuna (Thunnus thynnus, L. 1758) in the Eastern Mediterranean Sea, Turkey. Journal of Applied Ichthyology, 25, 757761.
Kittinger, J. N., Teh, L. C. L., Allison, E. H., Bennett, N. J., Crowder, L. B., Finkbeiner, E. M., … Aulani Wilhelm, T. (2017). Committing to socially responsible seafood. Science, 356(6341), 912913.
Kock, K. H. (1992). Antarctic Fish and Fisheries. Cambridge University Press.
Koslow, J. A. (1997). Seamounts and the ecology of deep-sea fisheries. American Scientist, 85(2), 168176.
Koslow, J. A., Boehlert, G. W., Gordon, J. D. M., Haedrich, R. L., Lorance, P., & Parin, N. (2000). The impact of fishing on continental slope and deep-sea ecosystems. ICES Journal of Marine Science, 57, 548557.
Kurlansky, M. (1997). Cod: A Biography of the Fish That Changed the World. Knopf.
Kurlansky, M. (1999). The Basque History of the World. Walker.
Lam, V. W. Y., Sumaila, U. R., Dyck, A., Pauly, D., & Watson, R. (2011). Construction and first applications of a global cost of fishing database. ICES Journal of Marine Science, 68(9), 19962004.
Macpherson, M. (2001). Integrating ecosystem management approaches into federal fishery management through the Magnuson–Stevens Fishery Conservation and Management Act. Ocean and Coastal Law Journal, 6, 132.
Martell, S., & Froese, R. (2013). A simple method for estimating MSY from catch and resilience. Fish and Fisheries, 14(4), 504514.
McHugh, J. L. (1952). The food of albacore (Germo alalunga) off California and Baja California. Bulletin of the Scripps Institution of Oceanography, 6(4), 161172.
Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-Being: Synthesis. Millennium Ecosystem Assessment.
MSA (2007). Magnuson–Stevens Fishery Conservation and Management Reauthorization Act of 2006. Office of the Federal Register.
O'Leary, B. C., Ban, N. C., Fernandez, M., Friedlander, A. M., García-Borboroglu, P., Golbuu, Y., … Roberts, C. M. (2018). Addressing criticisms of large-scale marine protected areas. Bioscience, 68(5), 359370.
Olafsdottir, D., MacKenzie, B. R., Chosson-P, V., & Ingimundardottir, T. (2016). Dietary evidence of mesopelagic and pelagic foraging by Atlantic bluefin tuna (Thunnus thynnus L.) during autumn migrations to the Iceland Basin. Frontiers in Marine Science, 3, 108.
Olsen, Y. (2011). Resources for fish feed in future mariculture. Aquaculture Environment Interactions, 1, 187200.
Palomares, M. L. D., & Pauly, D. (eds) (2017). SeaLifeBase. Retrieved from www.sealifebase.org.
Pauly, D. (1997). Small-scale fisheries in the tropics: marginality, marginalization, and some implications for fisheries management. In Pikitch, E. K., Huppert, D. D., & Sissenwine, M. P. (eds), Global Trends: Fisheries Management (pp. 4049). American Fisheries Society.
Pauly, D. (2006). Major trends in small-scale marine fisheries, with emphasis on developing countries, and some implications for the social sciences. Maritime Studies (MAST), 4(2), 722.
Pauly, D. (2018a). The future of artisanal fishing. Science, 360(6385), 161.
Pauly, D. (2018b). A vision for marine fisheries in a global blue economy. Marine Policy, 87, 371374.
Pauly, D., & Charles, T. (2015). Counting on small-scale fisheries. Science, 347, 242243.
Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J., … Zeller, D. (2002). Towards sustainability in world fisheries. Nature, 418, 689695.
Pauly, D., & Zeller, D. (2016a). Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Communications, 7, 10244.
Pauly, D., & Zeller, D. (2016b). Towards a comprehensive estimate of global marine fisheries catches. In Pauly, D. & Zeller, D. (eds), Global Atlas of Marine Fisheries: A Critical Appraisal of Catches and Ecosystem Impacts (pp. 171181). Island Press.
Pauly, D., & Zeller, D. (eds) (2016c). Global Atlas of Marine Fisheries: A Critical Appraisal of Catches and Ecosystem Impacts. Island Press.
Pauly, D., & Zeller, D. (2017a). The best catch data that can possibly be? Rejoinder to Ye et al. “FAO's statistic data and sustainability of fisheries and aquaculture”. Marine Policy, 81, 406410.
Pauly, D., & Zeller, D. (2017b). Comments on FAOs State of World Fisheries and Aquaculture (SOFIA 2016). Marine Policy, 77, 176181.
Pauly, D., & Zeller, D. (2019). Agreeing with FAO: Comments on SOFIA 2018. Marine Policy, 100, 332333.
Potier, M., Marsac, F., Cherel, Y., Lucas, V., Sabatié, R., Maury, O., & Ménard, F. (2007). Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fisheries Research, 83(1), 6072.
Roberts, C. M., Bohnsack, J. A., Gell, F., Hawkins, J. P., & Goodridge, R. (2001). Effects of marine reserves on adjacent fisheries. Science, 294(5548), 19201923.
Roberts, C. M., O'Leary, B. C., McCauley, D., Castilla, J. C., Cury, P., Duarte, C. M., … Lubchenco, J. (2017). Marine reserves can mitigate and promote adaptation to climate change. Proceedings of the National Academy of Sciences, 114(24), 61676175.
Rosenberg, A. A., Fogarty, M. J., Cooper, A. B., Dickey-Collas, M., Fulton, E. A., Gutiérrez, N. L., … Ye, Y. (2014). Developing New Approaches to Global Stock Status Assessment and Fishery Production Potential of the Seas. Food and Agriculture Organization of the United Nations.
Rothwell, D. R. (2003). The International Tribunal for the Law of the Sea and marine environmental protection: Expanding the horizons of international oceans governance. Ocean Yearbook, 17, 2655.
Sala, E., Mayorga, J., Costello, C., Kroodsma, D., Palomares, M. L. D., Pauly, D., … Zeller, D. (2018). The economics of fishing the high seas. Science Advances, 4(6), eaat2504.
Schiller, L., Alava, J. J., Grove, J., Reck, G., & Pauly, D. (2015). The demise of Darwin's fishes: Evidence of fishing down and illegal shark finning in the Galápagos Islands. Aquatic Conservation: Marine and Freshwater Ecosystems, 25(3), 431446.
Schiller, L., Bailey, M., Jacquet, J., & Sala, E. (2018). High seas fisheries play a negligible role in addressing global food security. Science Advances, 4(8), eaat8351.
Seto, K., Belhabib, D., Mamie, J., Copeland, D., Michael Vakily, J., Seilert, H., … Pauly, D. (2017). War, fish, and foreign fleets: The Marine Fisheries Catches of Sierra Leone 1950–2015. Marine Policy, 83, 153163.
Shiga, D. (2008). Stephen Hawking calls for Moon and Mars colonies. New Scientist, April 21.
Simmons, G., & Stringer, C. (2014). New Zealand's fisheries management system: Forced labour an ignored or overlooked dimension? Marine Policy, 50, 7480.
Steinsson, S. (2016). The Cod Wars: A re-analysis. European Security, 25(2), 256275.
Stringer, C., Simmons, G., Coulston, D., & Whittaker, D. H. (2014). Not in New Zealand's waters, surely? Linking labour issues to GPNs. Journal of Economic Geography, 14, 739758.
Stringer, C., Whittaker, D. H., & Simmons, G. (2016). New Zealand's turbulent waters: The use of forced labour in the fishing industry. Global Networks, 16(1), 324.
Sumaila, U. R., Khan, A., Dyck, A., Watson, R., Munro, R., Tyedmers, P., & Pauly, D. (2010). A bottom-up re-estimation of global fisheries subsidies. Journal of Bioeconomics, 12, 201225.
Sumaila, U. R., Lam, V., Le Manach, F., Swartz, W., & Pauly, D. (2016). Global fisheries subsidies: An updated estimate. Marine Policy, 69, 189193.
Sumaila, U. R., Lam, V. W. Y., Miller, D., Teh, L., Watson, R., Zeller, D., … Pauly, D. (2015). Winners and losers in a world where the high seas is closed to fishing. Nature Scientific Reports, 5, 8481.
Sumaila, U. R., Marsden, A. D., Watson, R., & Pauly, D. (2007). A global ex-vessel fish price database: Construction and applications. Journal of Bioeconomics, 9, 3951.
Sumaila, U. R., & Pauly, D. (2007). All fishing nations must unite to end subsidies. Nature, 450, 945.
Swartz, W., Sala, E., Tracey, S., Watson, R., & Pauly, D. (2010). The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS ONE, 5(12), e15143.
Swartz, W., Sumaila, U. R., & Watson, R. (2013). Global ex-vessel fish price database revisited: A new approach for estimating ‘missing’ prices. Environmental Resource Economics, 56, 467480.
Teh, L. C. L., & Pauly, D. (2018). Who brings in the fish? The relative contribution of small-scale and industrial fisheries to food security in Southeast Asia. Frontiers in Marine Science, 5, 44.
Teh, L. C. L., & Sumaila, U. R. (2013). Contribution of marine fisheries to worldwide employment. Fish and Fisheries, 14(1), 7788.
Thompson, D. (1988). The world's two marine fishing industries – How they compare. Naga, The ICLARM Quarterly, 11(3), 17.
Tickler, D., Meeuwig, J. J., Bryant, K., David, F., Forrest, J. A. H., Gordon, E., … Zeller, D. (2018). Modern slavery and the race to fish. Nature Communications, 9, 4643.
Tickler, D., Meeuwig, J. J., Palomares, M. L. D., Pauly, D., & Zeller, D. (2018). Far from home: Distance patterns of global fishing fleets. Science Advances, 4(8), eaar3279.
Tiller, R. G. (2010). New Resources in Old Waters. The Potential of National and International Conflicts Deriving from the Future Harvest of Calanus finmarchicus (PhD). Norwegian University of Science and Technology.
Tyedmers, P., Watson, R., & Pauly, D. (2005). Fueling global fishing fleets. AMBIO: A Journal of the Human Environment, 34(8), 635638.
UN (2017). The Sustainable Development Goals Report 2017. United Nations.
Walk Free Foundation (2016). The Global Slavery Index 2016. The Minderoo Foundation.
Walk Free Foundation (2018). The Global Slavery Index 2018. The Minderoo Foundation.
White, C., & Costello, C. (2014). Close the high seas to fishing? PLoS Biology, 12(3), e1001826.
Ye, Y., Barange, M., Beveridge, M., Garibaldi, L., Gutierrez, N., Anganuzzi, A., & Taconet, M. (2017). FAO's statistic data and sustainability of fisheries and aquaculture: Comments on Pauly and Zeller (2017). Marine Policy, 81, 401405.
Yellen, J. E., Brooks, A. S., Cornelissen, E., Mehlman, M. J., & Stewart, K. (1995). A middle stone-age worked bone industry from Katanda, Upper Semliki Valley, Zaire. Science, 268(5210), 553556.
Zeller, D. (2005). From Mare Liberum to Mare Reservarum: Canada's opportunity for global leadership in ocean resource governance. In Chircop, A. & McConnell, M. (eds), Ocean Yearbook (pp. 118). University of Chicago Press.
Zeller, D., Booth, S., Pakhomov, E., Swartz, W., & Pauly, D. (2011). Arctic fisheries catches in Russia, USA and Canada: Baselines for neglected ecosystems. Polar Biology, 34(7), 955973.
Zeller, D., Cashion, T., Palomares, M. L. D., & Pauly, D. (2018). Global marine fisheries discards: A synthesis of reconstructed data. Fish & Fisheries, 19(1), 3039.
Zeller, D., Palomares, M. L. D., Tavakolie, A., Ang, M., Belhabib, D., Cheung, W. W. L., … Pauly, D. (2016). Still catching attention: Sea Around Us reconstructed global catch data, their spatial expression and public accessibility. Marine Policy, 70, 145152.
Zeller, D., & Pauly, D. (2018). The ‘presentist bias’ in time-series data: Implications for fisheries science and policy. Marine Policy, 90, 1419.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Global Sustainability
  • ISSN: -
  • EISSN: 2059-4798
  • URL: /core/journals/global-sustainability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed