Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-11T12:37:24.325Z Has data issue: false hasContentIssue false

Neutrinos from Pulsar Environments

Published online by Cambridge University Press:  30 March 2016

A. Melatos*
Affiliation:
School of Physics, University of Melbourne, Parkville VIC 3010, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent calculations of the neutrino fluxes and spectra from pulsar magnetospheres and wind nebulae are reviewed. The neutrinos, produced in pp and collisions via pion decays, are a signature of TeV ions accelerated electrostatically in the magnetosphere, in the wind termination shock (Fermi), or in the wind neutral sheet (wave surfing and/or reconnection). The fluxes and spectra are related to the energy and density of the accelerated ion beam and the densities of the target species, thereby constraining ion-loaded pulsar wind models originally developed to explain the variable wisps in pulsar-driven supernova remnants. The neutrino signal may be detectable by km2 telescopes (e.g. IceCube) and is correlated with TeV γ-ray emission. Related sources are also reviewed, such as early-phase post-supernova pulsar winds, pulsar-driven γ-ray-burst afterglows, and accreting neutron stars. The possibility of long baseline oscillation experiments, to search for fine splitting of neutrino mass eigenstates and non-radiative neutrino decays, is noted.

Type
I. Joint Discussions
Copyright
Copyright © Astronomical Society of Pacific 2005

References

Aharonian, F. A., et al. 2000, ApJ, 539, 317 CrossRefGoogle Scholar
Alvarez-Muñiz, J., & Halzen, F. 2002, ApJ, 576, L33 Google Scholar
Amato, E., Guetta, D., & Blasi, P. 2003, A&A, 402, 827 Google Scholar
Anchordoqui, L. A., et al. 2003, ApJ, 589, 481 Google Scholar
Arons, J. 2003, ApJ, 589, 871 CrossRefGoogle Scholar
Barenboim, G., & Quigg, C. 2003, Phys.Rev.D, 67, 073024Google Scholar
Beali, J. H., & Bednarek, W. 2002, ApJ, 569, 343 CrossRefGoogle Scholar
Bednarek, W. 2003, A&A, 407, 1 Google Scholar
Bednarek, W., & Protheroe, R. J. 1997, Phys.Rev.Lett, 79, 2616 CrossRefGoogle Scholar
Berezinskii, V. S., & Prilutskii, O. F. 1977, Soviet Ast., 3, L79 Google Scholar
Chiang, J., & Romani, R. W. 1994, ApJ, 436, 754 Google Scholar
Contopoulos, I., & Kazanas, D. 2002, ApJ, 566, 336 Google Scholar
Coroniti, F. V. 1990, ApJ, 349, 538 Google Scholar
Gaensler, B. M., et al. 2002, ApJ, 569, 878 Google Scholar
Gallant, Y. A., & Arons, J. 1994, ApJ, 435, 230 CrossRefGoogle Scholar
Guetta, D., & Amato, E. 2003, Astropart. Phys., 19, 403 CrossRefGoogle Scholar
Guetta, D., & Granot, J. 2003, Phys.Rev.Lett, 90, 201103 Google Scholar
Hester, J. J., et al. 1995, ApJ, 448, 240 Google Scholar
Hester, J. J., et al. 1996, ApJ, 456, 225 Google Scholar
Hester, J. J., et al. 2002, ApJ, 577, L49 Google Scholar
Kifune, T., et al. 1995, ApJ, 438, 91 Google Scholar
Komissarov, S. S., & Lyubarsky, Y. E. 2003, MNRAS, 344, L93 CrossRefGoogle Scholar
Lyubarsky, Y., & Kirk, J. 2001, ApJ, 547, 437 Google Scholar
Melatos, A. 1998, Mem. Soc. Ast. It., 69, 1009 Google Scholar
Melatos, A., & Melrose, D. B. 1996, MNRAS, 279, 1168 Google Scholar
Sako, T., et al. 2000, ApJ, 537, 422 CrossRefGoogle Scholar
Shapiro, S. L., & Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and Neutron Stars (New York: Wiley)Google Scholar
Spitkcovksy, A., & Arons, J. 2004, ApJ, 603, 669 Google Scholar
Weekes, T. C., et al. 1989, ApJ, 342, 379 Google Scholar
Yoshikoshi, T., et al. 1997, ApJ, 487, L65 Google Scholar