Hostname: page-component-857557d7f7-v48vw Total loading time: 0 Render date: 2025-11-20T06:27:22.620Z Has data issue: false hasContentIssue false

Epidemiologic and Clinical Utility of Typing Systems for Differentiating Among Strains of Methicillin-Resistant Staphylococcus aureus

Published online by Cambridge University Press:  21 June 2016

Maury E. Mulligan
Affiliation:
Infectious Disease Service, VA Medical Center, Long Beach, California and the Department of Medicine, University of California, Irvine, Irvine, California
Robert D. Arbeit*
Affiliation:
Research Service, VA Medical Center, Boston, Massachusetts and the Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
*
Research Service (151), VA Medical Center, 150 S. Huntington Avenue, Boston, MA 02130

Abstract

Typing systems for differentiating among strains of methicillin-resistant Staphylococcus aureus (MRSA) can be valuable tools for the epidemiologist and the clinician. Specific criteria for evaluating such systems are typeability, reproducibility, and discriminatory power. An ideal typing system also would be rapid, inexpensive, technically simple, and readily available. Systems based on the detection of phenotypic variations include antimicrobial susceptibility testing, bacteriophage typing, multilocus enzyme electrophoresis, and electrophoretic methods such as protein eletrophoresis and immunoblotting. Systems that directly detect genotypic variations include plasmid profile analysis, restriction enzyme analysis of plasmid DNA, restriction enzyme analysis of chromosomal DNA, Southern blot analysis of specific restriction fragment length polymorphisms, and pulse field gel electrophoresis. in general, the more widely available typing systems based on phenotypic assays and plasmid analysis have limitations in typeability and/or discriminatory power.The chromosomal DNA-based techniques, although promising, are unproven approaches still under active investigation.

Information

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1991 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. LiPuma, J, Stull, T, Dasen, S, et al. DNA polymorphisms among Escherichia coli isolated from bacteruric women. J Infect Dis. 1989;159:526532.Google Scholar
2. Mulligan, ME. Hartstein, A. Morthland, V. Kwok, R. Recurrent Staphylococcus aureus bacteremia. 30th Interscience Conference on Antimicrobial Agents and Chemotherapy, October 21-24, 1990. Atlanta, Ga; Abstract.Google Scholar
3. Selander, RK, Musser, JM. Caugant, DA, Gilmour, MN, Whittam, TS. Population genetics of pathogenic bacteria. Microb Pathog.1987;3:17.Google Scholar
4. Caugant, DA, Levin, BR, Orskov, I, et al. Genetic diversity in relationto serotype in Escherichia coli . Infect Immun. 1985;49:407413.Google Scholar
5. Selander, RF. Caugant, DA, Whittam, TS. Genetic structure and variation in natural populations of Escherichia coli . In: Neidhardt, FC, Ingraham, KL, Magasanik, B, Low, KB, Schaechter, M, Umbarrrer, BE, eds. Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology. Washington, DC: American Society for Microbiology; 1987;16251648.Google Scholar
6. Caugant, DA, Levin, BR. Lidin-Janson, G. et al. Genetic diversity and-relationships among strains of Escherichia coli in the intestine and those causing urinary tract infections. Progress in Allergy. 1983;33:203227.Google Scholar
7. Branger, C, Goullet, P. Esterase electrophoretic polymorphism of methicillin-sensitive and methicillin-resistant strainsof Staphylococcus aureus . J Med Microbiol. 1987;24:275281.Google Scholar
8. Branger, C, Goullet, P, Boutonnier, A, Fournier, JM. Correlation between esterase elcctrophoretic types and capsular polysaccharide types 5 and 8 among methicillin-susceptible and methicillin-resistant strains of Staphylococcus aureus . J Clin Microbiol. 1990;28:150151.Google Scholar
9. Lacey, R, Kruczenyk, S. Epidemiology of antibiotic resistance in Staphylococcus aureus . J Antimicrob Chemother. 1986;18(suppl C):207214.Google Scholar
10. Skurray, RA, Rouch, DA, Lyon, BR, et al. Multiresistant Staphylococcus aureus: genetics and evolution of epidemic Australian strains. J Antimicrob Chemother. 1988;21 (suppl C): 1939.Google Scholar
11. Arbeit, RD. Arthur, M, Dunn, RD, et al. Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed field electrophoresis to molecular epidemiology. J Infect Dis. 1990;161:230235.Google Scholar
12. Lawrence, TG, Dvkhuizen, DE, DuBose, RF, Haiti, DL. Phylogenetic analysis using insertion sequence fingerprinting in Escherichia coli . Mol Biol Evol. 1989;6:114.Google Scholar
13. Richardson, JF, Marples, RR. Changing resistance to antimicrobial drugs, and resistancetyping in clinically significant strains of Staphylococcus epidermidis . J Med Microbiol.1982:15:475484.Google Scholar
14. Hunter, PR, Gaston, MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol. 1988;26:24652466.Google Scholar
15. Hunter, PR. Reproducibility and indices of discriminatory power of microbial typing methods. J Clin Microbiol. 1990;28:19031905.Google Scholar
16. Wachsmuth, K. Genotypic approaches to the diagnosis of bacterial infections: plasmid analyses and gene probes. Infect Control. 1985;6:100109.Google Scholar
17. Archer, GL Mayhall, CG. Comparison of epidemiological markers used in the investigation of an outbreak of methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol. 1983;18:395399.Google Scholar
18. Collins, JK, Smith, JS, Kelly, MT Comparison of phage typing, plasmid mapping and antibiotic resistance patterns as epidemiologic markers in a nosocomial outbreak of methicillin-resistant Staphylococcus aureus infections. Diagn Microbiol Infect Dis. 1984;2:233245.Google Scholar
19. Gillespie, MT, May, JW, Skurray, RA. Antibiotic susceptibilities and plasmid profiles of nosocomial methicillin-resistantStaphylococcus aureus: a retrospective study. J Med Microbiol. 1984;17:295310.Google Scholar
20. Kozarsky, PE, Rimland, D, Terry, PM, Wachsmuth, K. Plasmid analysis of simultaneous nosocomial outbreaks of methicillin-resistant Staphylococcus aureus . Infect Control. 1986;7:577581 Google Scholar
21. Menzies, RE. Cornere, BM. MacCulloch, D. Adantation of methicillin-resistant Staphylococcus aureus during antibiotic therapy. J Antimicrob Chemother. 1989;23:923927.Google Scholar
22. Mickelsen, PA, Plorde, JJ, Gordon, KP, et al. Instability of antibiotic resistance in a strain of Staphylococcus epidermidis isolated from an outbreak of prosthetic valve endocarditis. J Infect Dis. 1985;152:5058.Google Scholar
23. Parisi, IT. LamDson, KC. Hoover, DW. Khan, IA. Comaarison of epidemidlogic' markers for Staphylococcus epidermidis . J Clin Microbiol. 1986;24:5660.Google Scholar
24. Mulligan, ME, Kwok, RYY. Citron, DM. John, JF Jr, Smith, PB. Immunoblots, antimicrobial resistance and bacteriophage typing of oxacillin-resistant Staphylococcus aureus . J Clin Microbiol. 1988;26:23952401.Google Scholar
25. Blair, JE, Williams, REO. Phage typing of staphylococci. Bull World Health Organ. 1961;24:771784.Google Scholar
26. Cristino, JA, Pereira, AT Plasmid analysis of 219 methicillin-resistant Staphylococcus aureus strains with uncommon profiles isolated in Lisbon. J Hosp Infect. 1989;13:133141.Google Scholar
27. Khalifa, KI, Heiba, AA, Hancock, G. Nontypeable bacteriophage patterns of methicillin-resistant Staphylococcus aureus involved in a hospital outbreak. J Clin Microbiol. 1989;27:22492251.Google Scholar
28. Rhinehart, E, Shlaes, DM, Keys, TF, et al. Nosocomial clonal dissemination of methicillin-resistant Staphylococcus aureus . Arch Intern Med. 1987;147:521524.Google Scholar
29. Carroll, JD, Pomeroy, HM, Russell, RJ, et al. A new methicillin-and gentamicin-resistant Staphylococcus aureus in Dublin: molecular genetic analysis. J Med Microbiol. 1989:28:1523.Google Scholar
30. Gaston, MA, Duff, PS, Naidoo, J, et al. Evaluation of electro-phoretic methods for typing methicillin-resistant Staphylococcus aureus . J Med Microbiol. 1988;26:189197.Google Scholar
31. Lundholm, M, Bergendahl, B. Heat treatment to increase phage typeability of Staphylococcus aureus . Eur J Clin Microbiol Infect Dis. 1988;7:300302.Google Scholar
32. Richardson, JF, Chittasobhon, N, Marples, RR. Supplementary phages for the investigation of strains of methicillin-resistant Staphylococcus aureus . 7 Med Microbiol. 1988;25:6774.Google Scholar
33. Vickery, AM. Beard-Pegler, MA, Rountree, PM. Strain differentiation in methicillin-resistant Staphylococcus aureus . Pathology. 1983;15:235240.Google Scholar
34. Arbeit, RD. Karakawa, WW. Vann, WF. Robbins, TB. Predominance 'of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus . Diagn Microbiol Infect Dis. 1984;2:8591.Google Scholar
35. Karakawa, WW, Fournier, JM, Vann, WF, et al. Method for the serological typing of the capsular polysaccharides of Staphylococcus aureus . J Clin Microbiol. 1985;22:445447.Google Scholar
36. Fournier, J, Bouvet, A, Boutonnier, A, et al. Predominance of capsular polysaccharide type 5 among oxacillin-resistant Staphylococcus aureus . J Clin Microbiol. 1987;25:19321933.Google Scholar
37. Costas, M, Cookson, BD, Talsania, HG, Owen, RJ. Numerical analysis of electrophoretic protein patterns of methicillinresistant strains of Staphylococcus aureus . J Clin Microbiol. 1989;27:25742581.Google Scholar
38. Stephenson, JR, Crook, SJ, Tabaqchali, S. New methods for typing Staphylococcus aureus resistant to methicillin based on sulphur-35 methionine labelled protein: its application to an outbreak. Br Med J. 1986;293:581583.Google Scholar
39. Tabaqchali, S, Silman, R, Holland, D. Automation in clinical microbiology: a new approach to identifying micro-organisms by automated pattern matching of proteins labelled with ;35S-methionine. J Clin Pathol. 1987;40:10701087.Google Scholar
40. Burnie, JP, Matthews, RC, Lee, W, Murdoch, D. A comparison of immunoblot and DNA restriction patterns in characterising methicillin-resistant isolates of Staphylococcus aureus . J Med Microbiol. 1989;29:255261.Google Scholar
41. Selander, RK, Caugant, DA, Ochman, H, et al. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol. 1986;51:873884.Google Scholar
42. Bouvet, A, Fournier, JM, Audurier, A, et al. Epidemiological markers for epidemic strain and carrier isolates in an outbreak of nosocomial oxacillin-resistant Staphylococcus aureus . J Clin Microbiol. 1990;28:13381341.Google Scholar
43. Opal, SM, Mayer, KH, Stenberg, MJ, et al. Frequent acquisition of multiple strains of methicillin-resistantStaphylococcus aureus by healthcare workers in an endemic hospital environment. Infect Control Hosp Epidemiol. 1990;11:479485.Google Scholar
44. McGowan, JE Jr, Terry, PM, Huang, T-SR, Houk, CL, Davies, J. Nosocomial infections with gentamicin-resistant Staphylococcus aureus: plasmid analysis as an epidemiologic tool. J Infect Dis. 1979;140:864972.Google Scholar
45. Locksley, RM, Cohen, ML, Quinn, TC, et al. Multiply antibiotic resistant Staphylococcus aureus: introduction, transmission and evolution of nosocomial infection. Ann Intern Med.1982;97:317324.Google Scholar
46. Archer, GL, Vishniavsky, N, Stiver, HG. Plasmid pattern analysis of Staphylococcus epidermidis isolates from patients with prosthetic valve endocarditis. Infect Immun. 1982;35:627632.Google Scholar
47. Coia, JE, Noor, HI, Platt, DJ. Plasmid profiles and restriction enzyme fragmentation patterns of plasmids of methicillin-sensitive and methicillin-resistant isolates of Staphylococcus aureus from hospital and the community. J Med Microbiol. 1988;27:271276.Google Scholar
48. Zuccarelli, AJ, Roy, I, Harding, GP, Couperus, JJ. Diversity and stability of restriction enzyme profiles of plasmid DNA from methicillin-resistant Staphylococcus aureus . J Clin Microbiol. 1990;28:97102.Google Scholar
49. Bialkowska-Hobrazanska, H, Jaskot, D, Hammerberg, O. Evaluation of restriction endonuclease fingerprinting of chromosomal DNA and plasmid profile analysis for characterization of multiresistant coagulase-negative staphylococci in bacteremic neonates. J Clin Microbiol.1990;28:269275.Google Scholar
50. Lupski, JR. Molecular mechanisms for transposition of drug-resistance genes and other moveable genetic elements. Rev Infect Dis. 1987;9:357368.Google Scholar
51. Hartstein, Al, Valvano, MA, Morthland, VH, et al. Antimicrobic susceptibility and plasmid profile analysis as identity tests for multiple blood isolates of coagulase-negative staphylococci. J Clin Microbiol. 1987;25:589593.Google Scholar
52. Tompkins, LS, Troup, NJ, Woods, T Bibb, W, McKinney, RM. Molecular epidemiology of legionella species by restriction endonuclease and alloenzyme analysis. J Clin Microbiol. 1987;25:18751880.Google Scholar
53. Cleat-y, PP, Kaplan, EL, Livdahl, C, Skjold, S. DNA fingerprints of Streptococcus pyogenes are M type specific. J Infect Dis. 1988;158:13171323.Google Scholar
54. Patterson, TF, Patterson, JE, Masecar, BL, et al. A nosocomial outbreak of Branhamella catarrhalis confirmed by restriction endonuclease analysis. J Infect Dis. 1988;157:9961001.Google Scholar
55. Cookson, BD, Phillips, I. Epidemic methicillin-resistant Staphylococcus aureus . J Antimicrob Chemother. 1988;21(suppl C):5765.Google Scholar
56. Jordens, JZ, Hall, LMC. Characterization of methicillin-resistant Staphylococcus aureus isolates by restriction endonuclease digestion of chromosomal DNA. J Med Microbiol. 1988;27:117–123.Google Scholar
57. vanKetel, RJ. Similar DNA restriction endonuclease profiles in strains of Legionella pneumophilia from different serogroups. J Clin Microbiol. 1988;26:18381841.Google Scholar
58. Southern, EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98:503517.Google Scholar
59. Stull, TL. LiPuma, JJ, Edlind, TD. A broad-spectrum probe for molecular epidemiology of bacteria: ribosomal RNA. J Infect Dis. 1989;157:280286.Google Scholar
60. Altwegg, M, Hickman-Brenner, F, Farmmer, J III. Ribosomal RNA eene restriction patterns include increased sensitivity for typing Salmonella typhi strains. J Infect Dis. 1989;160:145149.Google Scholar
61. Arthur, M, Arbeit, RD, Kim, C, et al. Restriction fragment length polymorphisms among uropathogenic Escherichia coli: pap-related sequences compared with rrn operons. Infect Immun. 1990;58:471479.Google Scholar
62. Irino, K, Grimont, F, Casin, I, Grimont, PAD, the Brazilian Purpuric Fever Study Group. rRNA gene restriction patterns of Haemophilus influenzae biogroup aegyptius strains associated with Brazilian purpuric fever. I Clin Microbiol. 1988:26:15351538.Google Scholar
63. Rabkin, C, Jarvis, W, Anderson, R, et al. Pseudomonas cepacia typing systems: collaborative study to assess their potential in epidemiologic investigations. Rev Infect Dis. 1989;11:600607.Google Scholar
64. Grimont, F, Grimont, PAD. Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Annals de Institute Pasteur. 1986; 137B:165175.Google Scholar
65. Goering, RV, Duensing, TD. Rapid field inversion gel electrophoresis in combination with an rRNA gene probe in the epidemiological evaluation of staphylococci. J Clin Microbiol.1990;28:426429.Google Scholar
66. Thomson-Carter, FM, Carter, PE, Pennington, TH. Differentiation of staphylococcal species and strains by ribosomal RNA gene restriction patterns. J Gen Microbiol. 1989;135:20932097.Google Scholar
67. De Buyser, M-L, Morvan, A, Grimont, F, El Solh, N. Characterization of Staphylococcus species by ribosomal RNA gene restriction patterns. J Gen Microbiol. 1989;135:989999.Google Scholar
68. Mulvey, M, Arbuthnott, JP, Coleman, DC. Molecular typing of methicillin- and gentamicin-resistant Staphylococcus aureus in Dublin. Eur J Clin Microbiol. 1986;5:719725.Google Scholar
69. Storrs, MJ, Courvalin, P, Foster, TJ. Genetic analysis of gentamicin resistance in methicillin- and gentamicin-resistant strains of Staphylococcus aureus isolated in Dublin hospitals. Antimicrob Agents Chemother. 1988;32:11741181.Google Scholar
70. Chu, MC. Kreiswirth, BN. Pattee, PA. et al. Association of toxic shock toxin-1 determinant with a heterologous insertion at multiple loci in the Staphylococcus aureus chromosome. Infect Immun.1988;56:27022708.Google Scholar
71. Ogle, J, Janda, J, Woods, D, Vasil, M. Characterization and use of a DNA probe as an epidemiological marker for Pseudomonas aeruginosa . J Infect Dis1. 1987;155:119126.Google Scholar
72. Samadpour, M, Moseley, S, Lory, S. Biotinylated DNA probes for exotoxin A and pilin genes in the differentiation of Pseudomonas aeruginosa strains. J Clin Microbiol. 1988;26:23192323.Google Scholar
73. Plos, K, Hull, SI, Hull, RA, et al. Distribution of the P-associated-pilus (pap) region among Escherichia coli from natural sources: evidence for horizontal gene transfer. Infect Immun.1989;57:16041611.Google Scholar
74. Coyle, MB, Groman, NB, Russell, JQ, et al. The molecular epidemiology of three biotypes of Corynebacterium diphtheriae in the Seattle outbreak, 1972–1982. J Infect Dis. 1989;159:670679.Google Scholar
75. Smith, CL, Warburton, PE, Gaal, A, Cantor, CR. Analysis of genome organization and rearrangements by pulsed field gradient gel electrophoresis. In: Setlow, JK, ed. Genetic Engineering, Principles and Methods. Vol 8. New York, NY: Plenum Press; 1986:4570.Google Scholar
76. Smith, CL, Econome, JG, Schutt, A, Klco, S, Cantor, CR. A physical map of the Escherichia coli K12 genome. Science. 1987;236:14481453.Google Scholar
77. Patel, A. Foster, T, Pattee, P. Physical and genetic mapping of the protein A gene in the chromosome of Staphylococcus aureus 8325-4 . I Gen Microbiol. 1989;135:17991807.Google Scholar
78. Chu, G, Vollrath, D, Davis, RW. Separation of large DNA molecules by contour-clamped homogenous electric fields. Science.1986;234:15821585.Google Scholar
79. Carle, GF, Frank, M, Olson, MV. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986;232:6568.Google Scholar
80. Murray, BE, Singh, KV, Heath, JD, Sharma, BR, Weinstock, GM. Comparison of genomic DNAs of different enterococcal isolates-using restriction endonucleases with infrequent recognition sites. I Clin Microbiol. 1990;28:20592063.Google Scholar
81. Grothues, D, Koopman, U, von der Hardt, H, Tummler, B. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related isolates. J Clin Microbiol. 1988;26:19731977.Google Scholar
82. Eisenstein, BI. New molecular techniques for microbial epidemiology and the diagnosis of infectious diseases. J Infect Dis. 1990;161:595602.Google Scholar
83. Vilgalys, P, Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacterial. 1990;172:42384246.Google Scholar
84. Orskov, F, Orskov, I. Summary of a workshop on the clone concept in epidemiology, taxonomy and evolution of the Enterobacteriaceae and other bacteria. J Infect Dis. 1983;148:346357.Google Scholar
85. Dykhuizen, D, Green, L. DNA sequence variation, DNA phylogeny and recombination in Escherichia coli . Genetics.1988;113:7184.Google Scholar
86. Milkman, R, Stoltzfus, A. Molecular evolution of the Escherichia coli chromosome. II. Clonal segments. Genetics. 1988;120:359366.Google Scholar
87. Peacock, JE, Marsick, FJ, Wenzel, RP. Methicillin-resistant Staphylococcus aureus: introduction and spread within a hospital. Ann Intern Med. 1980;93:526532.Google Scholar