Skip to main content Accessibility help

Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010

  • Dawn M. Sievert (a1), Philip Ricks (a1), Jonathan R. Edwards (a1), Amy Schneider (a1), Jean Patel (a1), Arjun Srinivasan (a1), Alex Kallen (a1), Brandi Limbago (a1), Scott Fridkin (a1) and National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities...



To describe antimicrobial resistance patterns for healthcare-associated infections (HAIs) reported to the National Healthcare Safety Network (NHSN) during 2009-2010.


Central line-associated bloodstream infections, catheter-associated urinary tract infections, ventilator-associated pneumonia, and surgical site infections were included. Pooled mean proportions of isolates interpreted as resistant (or, in some cases, nonsusceptible) to selected antimicrobial agents were calculated by type of HAI and compared to historical data.


Overall, 2,039 hospitals reported 1 or more HAIs; 1,749 (86%) were general acute care hospitals, and 1,143 (56%) had fewer than 200 beds. There were 69,475 HAIs and 81,139 pathogens reported. Eight pathogen groups accounted for about 80% of reported pathogens: Staphylococcus aureus (16%), Enterococcus spp. (14%), Escherichia coli (12%), coagulase-negative staphylococci (11%), Candida spp. (9%), Klebsiella pneumoniae (and Klebsiella oxytoca; 8%), Pseudomonas aeruginosa (8%), and Enterobacter spp. (5%). The percentage of resistance was similar to that reported in the previous 2-year period, with a slight decrease in the percentage of S. aureus resistant to oxacillins (MRSA). Nearly 20% of pathogens reported from all HAIs were the following multidrug-resistant phenotypes: MRSA (8.5%); vancomycin-resistant Enterococcus (3%); extended-spectrum cephalosporin-resistant K. pneumoniae and K. oxytoca (2%), E. coli (2%), and Enterobacter spp. (2%); and carbapenem-resistant P. aeruginosa (2%), K. pneumoniae/oxytoca (<1%), E, coli (<1%), and Enterobacter spp. (<1%). Among facilities reporting HAIs with 1 of the above gram-negative bacteria, 20%-40% reported at least 1 with the resistant phenotype.


While the proportion of resistant isolates did not substantially change from that in the previous 2 years, multidrug-resistant gram-negative phenotypes were reported from a moderate proportion of facilities.


Corresponding author

MS A-35, CDC, 1600 Clifton Road NE, Atlanta, GA 30333 (


Hide All
1.Hidron, AI, Edwards, JR, Patel, J, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 2008;29(11): 9961011. Erratum in Infect ControlHosp Epidemiol2009;30(1): 107.
2.CDC. The National Healthcare Safety Network (NHSN) Manual. Patient Safety Component Protocol. Centers for Disease Control and Prevention website, /dhqp/pdf/nhsn/NHSN_Manual_PatientSafetyProtocol_CURRENT.pdf. Published 2008.
3.Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing-sixteenth informational supplement. Wayne, PA: CLSI, 2008. CLSI document M100-S18.
4.Magiorakos, A-P, Srinivasan, A, Carey, RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18(3): 268281.
5.Landrum, ML, Neumann, C, Cook, C, et al. Epidemiology of Staphylococcus aureus blood and skin and soft tissue infections in the US military health system, 2005-2010. JAMA 2012;308(1): 5059.
6.Kallen, AJ, Mu, Y, Bulens, S, et al; Health care-associated invasive MRSA infections, 2005-2008. JAMA 2010;304(6):641648.
7.Kallen, AJ, Hidron, AI, Patel, J, Srinivasan, A. Multidrug resistance among gram-negative pathogens that caused healthcare-associated infections reported to the National Healthcare Safety Network, 2006-2008. Infect Control Hosp Epidemiol 2010;31(5): 528531.
8.Bradley, JS, Guidos, R, Baragona, S, et al. Anti-infective research and development: problems, challenges, and solutions. Lancet 2007;7:6878.
9.Lewis, JS II, Herrera, M, Wiekes, B, Patterson, JE, Jorgensen, JH. First report of the emergence of CTX-M-type extended-spectrum β-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother 2007; 51:40154021.
10.Bradford, PA, Bratu, S, Urban, C, et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lacta-mases in New York City. Clin Infect Dis 2004;39:5560.
11.Sexton, DJ, Chen, LF, Anderson, DJ. Current definitions of central line-associated bloodstream infection: is the emperor wearing clothes? Infect Control Hosp Epidemiol 2010;31(12):12861289.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed