Skip to main content

Costs and Mortality Associated With Multidrug-Resistant Healthcare-Associated Acinetobacter Infections

  • Richard E. Nelson (a1) (a2), Marin L. Schweizer (a3) (a4), Eli N. Perencevich (a3) (a4), Scott D. Nelson (a1), Karim Khader (a1) (a2), Hsiu-Yin Chiang (a5), Margaret L. Chorazy (a6), Amy Blevins (a5), Melissa A. Ward (a5) and Matthew H. Samore (a1) (a2)...

Our objective was to estimate the per-infection and cumulative mortality and cost burden of multidrug-resistant (MDR) Acinetobacter healthcare-associated infections (HAIs) in the United States using data from published studies.


We identified studies that estimated the excess cost, length of stay (LOS), or mortality attributable to MDR Acinetobacter HAIs. We generated estimates of the cost per HAI using 3 methods: (1) overall cost estimates, (2) multiplying LOS estimates by a cost per inpatient-day ($4,350) from the payer perspective, and (3) multiplying LOS estimates by a cost per inpatient-day from the hospital ($2,030) perspective. We deflated our estimates for time-dependent bias using an adjustment factor derived from studies that estimated attributable LOS using both time-fixed methods and either multistate models (70.4% decrease) or matching patients with and without HAIs using the timing of infection (47.4% decrease). Finally, we used the incidence rate of MDR Acinetobacter HAIs to generate cumulative incidence, cost, and mortality associated with these infections.


Our estimates of the cost per infection were $129,917 (method 1), $72,025 (method 2), and $33,510 (method 3). The pooled relative risk of mortality was 4.51 (95% CI, 1.10–32.65), which yielded a mortality rate of 10.6% (95% CI, 2.5%–29.4%). With an incidence rate of 0.141 (95% CI, 0.136–0.161) per 1,000 patient-days at risk, we estimated an annual cumulative incidence of 12,524 (95% CI, 11,509–13,625) in the United States.


The estimates presented here are relevant to understanding the expenditures and lives that could be saved by preventing MDR Acinetobacter HAIs.

Infect Control Hosp Epidemiol 2016;1–7

Corresponding author
Address correspondence to Richard E. Nelson, PhD, 500 Foothill Blvd, Salt Lake City, UT 84148 (
Hide All
1. Karageorgopoulos, DE, Falagas, ME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis 2008;8:751762.
2. Bergogne-Berezin, E, Towner, KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996;9:148165.
3. Landman, D, Quale, JM, Mayorga, D, et al. Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned. Arch Intern Med 2002;162:15151520.
4. Fournier, PE, Richet, H. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 2006;42:692699.
5. Association of American Medical Colleges (AAMC). Selected Medicare hospital quality provisions under the ACA. AAMC website. https:// Accessed November 6, 2014.
6. Brown, J, Doloresco Iii, F, Mylotte, JM. “Never events”: not every hospital-acquired infection is preventable. Clin Infect Dis 2009;49:743746.
7. Umscheid, CA, Mitchell, MD, Doshi, JA, Agarwal, R, Williams, K, Brennan, PJ. Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs. Infect Control Hosp Epidemiol 2011;32:101114.
8. Zimlichman, E, Henderson, D, Tamir, O, et al. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med 2013;173:20392046.
9. Gabriel, L, Beriot-Mathiot, A. Hospitalization stay and costs attributable to Clostridium difficile infection: a critical review. J Hosp Infect 2014;88:1221.
10. Nanwa, N, Kendzerska, T, Krahn, M, et al. The economic impact of Clostridium difficile infection: a systematic review. Am J Gastroenterol 2015;110:511519.
11. Wilson, SJ, Knipe, CJ, Zieger, MJ, et al. Direct costs of multidrug-resistant Acinetobacter baumannii in the burn unit of a public teaching hospital. Am J Infect Control 2004;32:342344.
12. Kaiser Family Foundation (KFF). Hospital adjusted expenses per inpatient day. KFF website. Accessed June 5, 2016.
13. International Federation of Health Plans. 2013, Comparative price report: variation in medical and hospital prices by country. Accessed June 5, 2016.
14. Grupper, M, Sprecher, H, Mashiach, T, Finkelstein, R. Attributable mortality of nosocomial Acinetobacter bacteremia. Infect Control Hosp Epidemiol 2007;28:293298.
15. Playford, EG, Craig, JC, Iredell, JR. Carbapenem-resistant Acinetobacter baumannii in intensive care unit patients: risk factors for acquisition, infection and their consequences. J Hosp Infect 2007;65:204211.
16. Sunenshine, RH, Wright, MO, Maragakis, LL, et al. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg Infect Dis 2007;13:97103.
17. Weingarten, CM, Rybak, MJ, Jahns, BE, Stevenson, JG, Brown, WJ, Levine, DP. Evaluation of Acinetobacter baumannii infection and colonization, and antimicrobial treatment patterns in an urban teaching hospital. Pharmacotherapy 1999;19:10801085.
18. Wong, TH, Tan, BH, Ling, ML, Song, C. Multi-resistant Acinetobacter baumannii on a burns unit—clinical risk factors and prognosis. Burns 2002;28:349357.
19. Nelson, RE, Nelson, SD, Khader, K, et al. The magnitude of time-dependent bias in the estimation of excess length of stay attributable to healthcare-associated infections. Infect Control Hosp Epidemiol 2015:16.
20. Ababneh, M, Harpe, S, Oinonen, M, Polk, RE. Trends in aminoglycoside use and gentamicin-resistant gram-negative clinical isolates in US academic medical centers: implications for antimicrobial stewardship. Infect Control Hosp Epidemiol 2012;33:594601.
21. Landman, D, Babu, E, Shah, N, et al. Transmission of carbapenem-resistant pathogens in New York City hospitals: progress and frustration. J Antimicrob Chemother 2012;67:14271431.
22. Reddy, T, Chopra, T, Marchaim, D, et al. Trends in antimicrobial resistance of Acinetobacter baumannii isolates from a metropolitan Detroit health system. Antimicrob Agents Chemother 2010;54:22352238.
23. Hall, MJ, Levant, S, DeFrances, CJ. Trends in Inpatient Hospital Deaths: National Hospital Discharge Survey, 2000-2010. Hyattsville, MD: National Center for Health Statistics; 2013.
24. Healthcare Cost and Utilization Project (HCUP). HCUP facts and figures. Published June 2013. Accessed March 18, 2015.
25. Nelson, RE, Jones, M, Liu, CF, et al. The impact of healthcare-associated methicillin-resistant Staphylococcus aureus infections on post-discharge healthcare costs and utilization. Infect Control Hosp Epidemiol 2015;36:534542.
26. Nelson, RE, Stevens, VW, Jones, M, Samore, MH, Rubin, MA. Health care-associated methicillin-resistant Staphylococcus aureus infections increases the risk of postdischarge mortality. Am J Infect Control 2015;43:3843.
27. Centers for Disease Control and Prevention (CDC). Nearly half a million Americans suffered from Clostridium difficile infctions in a single year. CDC website. Published February 25, 2015. Accessed June 5, 2016.
28. Manchanda, V, Sanchaita, S, Singh, N. Multidrug resistant Acinetobacter. J Glob Infect Dis 2010;2:291304.
29. Chastek, B, Harley, C, Kallich, J, Newcomer, L, Paoli, CJ, Teitelbaum, AH. Health care costs for patients with cancer at the end of life. J Oncol Pract 2012;8:75s80s.
30. Kelley, AS, McGarry, K, Fahle, S, Marshall, SM, Du, Q, Skinner, JS. Out-of-pocket spending in the last five years of life. J Gen Intern Med 2013;28:304309.
31. Riley, GF, Lubitz, JD. Long-term trends in Medicare payments in the last year of life. Health Serv Res 2010;45:565576.
32. Teno, JM, Gozalo, PL, Bynum, JP, et al. Change in end-of-life care for Medicare beneficiaries: site of death, place of care, and health care transitions in 2000, 2005, and 2009. JAMA 2013;309:470477.
33. Calfo, S, Smith, J, Zezza, M. Last year of life study. Centers for Medicare & Medicaid Services website. Published 2008. Accessed June 5, 2016.
34. Rice, DP. Cost of illness studies: what is good about them? Inj Prev 2000;6:177179.
35. Clabaugh, G, Ward, MM. Cost-of-illness studies in the United States: a systematic review of methodologies used for direct cost. Value Health 2008;11:1321.
36. Finkelstein, E, Corso, P. Cost-of-illness analyses for policy making: a cautionary tale of use and misuse. Expert Rev Pharmacoecon Outcomes Res 2003;3:367369.
37. Rice, DP. Cost-of-illness studies: fact or fiction? Lancet 1994;344:15191520.
38. Larg, A, Moss, JR. Cost-of-illness studies: a guide to critical evaluation. PharmacoEconomics 2011;29:653671.
39. Graves, N, Harbarth, S, Beyersmann, J, Barnett, A, Halton, K, Cooper, B. Estimating the cost of health care-associated infections: mind your p’s and q’s. Clin Infect Dis 2010;50:10171021.
40. Paterson, DL, Harris, PN. The new Acinetobacter equation: hypervirulence plus antibiotic resistance equals big trouble. Clin Infect Dis 2015;61:155156.
41. Jones, CL, Clancy, M, Honnold, C, et al. Fatal outbreak of an emerging clone of extensively drug-resistant Acinetobacter baumannii with enhanced virulence. Clin Infect Dis 2015;61:145154.
42. Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States, 2013. Atlanta, GA: CDC; 2013.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed