Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T20:54:51.829Z Has data issue: false hasContentIssue false

Disinfection of vascular catheter connectors that are protected by antiseptic caps is unnecessary

Published online by Cambridge University Press:  19 July 2023

Kelsey M. Fillman
Affiliation:
University of Nebraska Medical Center, Omaha, Nebraska
Jonathan H. Ryder
Affiliation:
Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska
Daniel M. Brailita
Affiliation:
Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska
Mark E. Rupp
Affiliation:
Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska
R. Jennifer Cavalieri
Affiliation:
Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska
Paul D. Fey
Affiliation:
Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
Elizabeth R. Lyden
Affiliation:
Epidemiology, University of Nebraska Medical Center, Omaha, Nebraska
Richard J. Hankins*
Affiliation:
Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska
*
Corresponding author: Richard J. Hankins; Email: Richard.hankins@unmc.edu

Abstract

Objective:

Determination of whether vascular catheter disinfecting antiseptic-containing caps alone are effective at decreasing microbial colonization of connectors compared to antiseptic-containing caps plus a 5-second alcohol manual disinfection.

Setting:

The study was conducted in a 718-bed, tertiary-care, academic hospital.

Patients:

A convenience sample of adult patients across intensive care units and acute care wards with peripheral and central venous catheters covered with antiseptic-containing caps.

Methods:

Quality improvement study completed over 5 days. The standard-of-care group consisted of catheter connectors with antiseptic-containing caps cleaned with a 5-second alcohol wipe scrub prior to culture. The comparison group consisted of catheter connectors with antiseptic-containing caps without a 5-second alcohol wipe scrub prior to culture. The connectors were pressed directly onto blood agar plates and incubated. Plates were assessed for growth after 48-72 hours.

Results:

In total, 356 catheter connectors were cultured: 165 in the standard-of-care group, 165 in the comparison group, and 26 catheters connectors without an antiseptic-containing cap, which were designated as controls. Overall, 18 catheter connectors (5.06%) yielded microbial growth. Of the 18 connectors with microbial growth, 2 (1.21%) were from the comparison group, 1 (0.61%) was from the standard-of-care group, and 15 were controls without an antiseptic-containing cap.

Conclusions:

Bacterial colonization rates were similar between the catheter connectors cultured with antiseptic-containing caps alone and catheter connectors with antiseptic-containing caps cultured after a 5-second scrub with alcohol. This finding suggests that the use of antiseptic-containing caps precludes the need for additional disinfection.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O’Grady, NP, Alexander, M, Burns, LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis 2011;52:e162e193.CrossRefGoogle ScholarPubMed
Danzig, LE, Short, LJ, Collins, K, et al. Bloodstream infections associated with a needleless intravenous infusion system in patients receiving home infusion therapy. JAMA 1995;273:18621864.CrossRefGoogle ScholarPubMed
Cookson, ST, Ihrig, M, O’Mara, EM, et al. Increased bloodstream infection rates in surgical patients associated with variation from recommended use and care following implementation of a needleless device. Infect Control Hosp Epidemiol 1998;19:2327.CrossRefGoogle ScholarPubMed
Rupp, ME, Sholtz, LA, Jourdan, DR, et al. Outbreak of bloodstream infection temporally associated with the use of an intravascular needleless valve. Clin Infect Dis 2007;44:14081414.CrossRefGoogle ScholarPubMed
Liñares, J, Sitges-Serra, A, Garau, J, Perez, J, Martin, R. Pathogenesis of catheter sepsis: a prospective study with quantitative and semiquantitative cultures of catheter hub and segments. J Clin Microbiol 1985;21:357360.CrossRefGoogle ScholarPubMed
Mermel, LA, McCormick, RD, Springman, SR, Maki, DG. The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swan-Ganz catheters: a prospective study utilizing molecular subtyping. Am J Med 1991;91:S197S205.CrossRefGoogle ScholarPubMed
Buetti, N, Marschall, J, Drees, M, et al. Strategies to prevent central-line–associated bloodstream infections in acute-care hospitals: 2022 Update. Infect Control Hosp Epidemiol 2022;43:553569.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. Vital signs: central-line–associated bloodstream infections—United States, 2001, 2008, and 2009. Morb Mortal Wkly Rep 2011;60:243248.Google Scholar
Rupp, ME, Yu, S, Huerta, T, et al. Adequate disinfection of a split-septum needleless intravascular connector with a 5-second alcohol scrub. Infect Control Hosp Epidemiol 2012;33:661665.CrossRefGoogle ScholarPubMed
Hankins, R, Majorant, OD, Rupp, ME, et al. Microbial colonization of intravascular catheter connectors in hospitalized patients. Am J Infect Control 2019;47:14891492.CrossRefGoogle ScholarPubMed
Menyhay, SZ, Maki, DG. Preventing central venous catheter–associated bloodstream infections: development of an antiseptic barrier cap for needleless connectors. Am J Infect Control 2008;36:S174.e171S174.CrossRefGoogle ScholarPubMed
Nicolás, FG, Casariego, GJN, Romero, MMV, García, JG, Diaz, RR, Perez, JAP. Reducing the degree of colonisation of venous access catheters by continuous passive disinfection. Eur J Hosp Pharm 2016;23:131133.CrossRefGoogle Scholar
Merrill, KC, Sumner, S, Linford, L, Taylor, C, Macintosh, C. Impact of universal disinfectant cap implementation on central-line–associated bloodstream infections. Am J Infect Control 2014;42:12741277.CrossRefGoogle ScholarPubMed
Voor, AF, Helder, OK, Vos, MC, et al. Antiseptic barrier cap effective in reducing central-line–associated bloodstream infections: a systematic review and meta-analysis. Int J Nurs Stud 2017;69:3440.CrossRefGoogle Scholar
Tejada, S, Leal-dos-Santos M, Peña-López Y, Blot S, Alp E, Rello J. Antiseptic barrier caps in central-line–associated bloodstream infections: a systematic review and meta-analysis. Eur J Intern Med 2022;99:7081.CrossRefGoogle ScholarPubMed
Farrington, CP, Manning, G. Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk. Stat Med 1990;9:14471454.CrossRefGoogle ScholarPubMed
Fakih, MG, Bufalino, A, Sturm, L, et al. Coronavirus disease 2019 (COVID-19) pandemic, central-line–associated bloodstream infection (CLABSI), and catheter-associated urinary tract infection (CAUTI): the urgent need to refocus on hardwiring prevention efforts. Infect Control Hosp Epidemiol 2022;43:2631.CrossRefGoogle ScholarPubMed