Skip to main content
×
Home

Hospital Transfer Network Structure as a Risk Factor for Clostridium difficile Infection

  • Jacob E. Simmering (a1), Linnea A. Polgreen (a1), David R. Campbell (a2), Joseph E. Cavanaugh (a3) and Philip M. Polgreen (a4)...
Abstract
OBJECTIVE

To determine the effect of interhospital patient sharing via transfers on the rate of Clostridium difficile infections in a hospital.

DESIGN

Retrospective cohort.

METHODS

Using data from the Healthcare Cost and Utilization Project California State Inpatient Database, 2005–2011, we identified 2,752,639 transfers. We then constructed a series of networks detailing the connections formed by hospitals. We computed 2 measures of connectivity, indegree and weighted indegree, measuring the number of hospitals from which transfers into a hospital arrive, and the total number of incoming transfers, respectively. Next, we estimated a multivariate model of C. difficile infection cases using the log-transformed network measures as well as covariates for hospital fixed effects, log median length of stay, log fraction of patients aged 65 or older, and quarter and year indicators as predictors.

RESULTS

We found an increase of 1 in the log indegree was associated with a 4.8% increase in incidence of C. difficile infection (95% CI, 2.3%–7.4%) and an increase of 1 in log weighted indegree was associated with a 3.3% increase in C. difficile infection incidence (1.5%–5.2%). Moreover, including measures of connectivity in our models greatly improved their fit.

CONCLUSIONS

Our results suggest infection control is not under the exclusive control of a given hospital but is also influenced by the connections and number of connections that hospitals have with other hospitals.

Infect. Control Hosp. Epidemiol. 2015;36(9):1031–1037

Copyright
Corresponding author
Address correspondence to Philip M. Polgreen, MD, MPH, Departments of Epidemiology and Internal Medicine, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242 (philip-polgreen@uiowa.edu).
Footnotes
Hide All

Presented in part: IDWeek 2013; San Francisco, California; October 5, 2013 (abstract 1214); and the 5th Biennial Conference of the American Society of Health Economists; University of Southern California; Los Angeles, CA; June 23, 2014; and the Midwest Social and Administrative Pharmacy Conference; Purdue University; Lafayette, IN; July 17, 2014.

Footnotes
References
Hide All
1. Halabi WJ, Nguyen VQ, Carmichael JC, Pigazzi A, Stamos MJ, Mills S. Clostridium difficile colitis in the United States: a decade of trends, outcomes, risk factors for colectomy, and mortality after colectomy. J Am Coll Surg 2013;217:802812.
2. McDonald LC, Owings M, Jernigan DB. Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996–2003. Emerg Infect Dis 2006;12:409.
3. Pepin J, Valiquette L, Cossette B. Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 2005;173:10371042.
4. Campbell RR, Beere D, Wilcock GK, Brown EM. Clostridium difficile in acute and long-stay elderly patients. Age Ageing 1988;17:333336.
5. Centers for Disease Control and Prevention. Vital signs: preventing Clostridium difficile infections. MMWR Morb Mortal Wkly Rep 2012;61:157.
6. Palmore TN, Sohn S, Malak SF, Eagan J, Sepkowitz KA. Risk factors for acquisition of Clostridium difficile-associated diarrhea among outpatients at a cancer hospital. Infect Control Hosp Epidemiol 2005;26:680684.
7. Stevens V, Dumyati G, Fine LS, Fisher SG, van Wijngaarden E. Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis 2011;53:4248.
8. Thomas C, Stevenson M, Riley TV. Antibiotics and hospital-acquired Clostridium difficile-associated diarrhoea: a systematic review. J Antimicrob Chemother 2003;51:13391350.
9. Wistrom J, Norrby SR, Myhre EB, et al. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: a prospective study. J Antimicrob Chemother 2001;47:4350.
10. Gurwith MJ, Rabin HR, Love K. Diarrhea associated with clindamycin and ampicillin therapy: preliminary results of a cooperative study. J Infect Dis 1977;135:S104S110.
11. Brown KA, Khanafer N, Daneman N, Fisman DN. Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection. Antimicrob Agents Chemother 2013;57:23262332.
12. Kyne L, Sougioultzis S, McFarland LV, Kelly CP. Underlying disease severity as a major risk factor for nosocomial Clostridium difficile diarrhea. Infect Control Hosp Epidemiol 2002;23:653659.
13. Loo VG, Bourgault AM, Poirier L, et al. Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med 2011;365:16931703.
14. Weber DJ, Anderson D, Rutala WA. The role of the surface environment in healthcare-associated infections. Curr Opin Infect Dis 2013;26:338344.
15. Kim KH, Fekety R, Batts DH, et al. Isolation of Clostridium difficile from the environment and contacts of patients with antibiotic-associated colitis. J Infect Dis 1981;143:4250.
16. McFarland LV, Mulligan ME, Kwok RY, Stamm WE. Nosocomial acquisition of Clostridium difficile infection. N Engl J Med 1989;320:204210.
17. Dubberke ER, Reske KA, Olsen MA, et al. Evaluation of Clostridium difficile–associated disease pressure as a risk factor for C. difficile–associated disease. Arch Intern Med 2007;167:10921097.
18. Shaughnessy MK, Micielli RL, DePestel DD, et al. Evaluation of hospital room assignment and acquisition of Clostridium difficile infection. Infect Control Hosp Epidemiol 2011;32:201206.
19. Karkada UH, Adamic LA, Kahn JM, Iwashyna TJ. Limiting the spread of highly resistant hospital-acquired microorganisms via critical care transfers: a simulation study. Intensive Care Med 2011;37:16331640.
20. Lesosky M, McGeer A, Simor A, Green K, Low DE, Raboud J. Effect of patterns of transferring patients among healthcare institutions on rates of nosocomial methicillin-resistant Staphylococcus aureus transmission: a Monte Carlo simulation. Infect Control Hosp Epidemiol 2011;32:136147.
21. Ciccolini M, Donker T, Grundmann H, Bonten MJ, Woolhouse ME. Efficient surveillance for healthcare-associated infections spreading between hospitals. Proc Natl Acad Sci U S A 2014;111:22712276.
22. Donker T, Wallinga J, Slack R, Grundmann H. Hospital networks and the dispersal of hospital-acquired pathogens by patient transfer. PLoS One 2012;7:e35002.
23. Donker T, Wallinga J, Grundmann H. Patient referral patterns and the spread of hospital-acquired infections through national health care networks. PLoS Comput Biol 2010;6:e1000715.
24. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech 2008;2008:P10008.
25. Lee BY, Bartsch SM, Wong KF, et al. The importance of nursing homes in the spread of methicillin-resistant Staphylococcus aureus (MRSA) among hospitals. Med Care 2013;51:205215.
26. Kay RS, Vandevelde AG, Fiorella PD, et al. Outbreak of healthcare-associated infection and colonization with multidrug-resistant Salmonella enterica serovar Senftenberg in Florida. Infect Control Hosp Epidemiol 2007;28:805811.
27. Hobson RP, MacKenzie FM, Gould IM. An outbreak of multiply-resistant Klebsiella pneumoniae in the Grampian region of Scotland. J Hosp Infect 1996;33:249262.
28. Svoboda T, Henry B, Shulman L, et al. Public health measures to control the spread of the severe acute respiratory syndrome during the outbreak in Toronto. N Engl J Med 2004;350:23522361.
29. Curtis DE, Hlady CS, Kanade G, Pemmaraju SV, Polgreen PM, Segre AM. Healthcare worker contact networks and the prevention of hospital-acquired infections. PLoS One 2013;8:e79906.
30. Hornbeck T, Naylor D, Segre AM, Thomas G, Herman T, Polgreen PM. Using sensor networks to study the effect of peripatetic healthcare workers on the spread of hospital-associated infections. J Infect Dis 2012;206:15491557.
31. Fries J, Segre AM, Thomas G, Herman T, Ellingson K, Polgreen PM. Monitoring hand hygiene via human observers: how should we be sampling? Infect Control Hosp Epidemiol 2012;33:689695.
32. Polgreen PM, Tassier TL, Pemmaraju SV, Segre AM. Prioritizing healthcare worker vaccinations on the basis of social network analysis. Infect Control Hosp Epidemiol 2010;31:893900.
33. Kuntz JL, Polgreen PM. The importance of considering different healthcare settings when estimating the burden of Clostridium difficile . Clin Infect Dis 2015;60:831836.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 9
Total number of PDF views: 95 *
Loading metrics...

Abstract views

Total abstract views: 297 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.