Skip to main content
×
×
Home

Identification of Clostridium difficile Reservoirs in The Patient Environment and Efficacy of Aerial Hydrogen Peroxide Decontamination

  • Samuel Yui (a1), Shanom Ali (a1), Monika Muzslay (a1), Annette Jeanes (a2) and A. Peter R. Wilson (a3)...
Abstract
OBJECTIVE

To identify, using a novel enhanced method of recovery, environmental sites where spores of Clostridium difficile persist despite cleaning and hydrogen peroxide aerial decontamination.

DESIGN

Cohort study.

SETTING

Tertiary referral center teaching hospital.

METHODS

In total, 16 sites representing high-frequency contact or difficult-to-clean surfaces in a single-isolation room or bed area in patient bed bays were sampled before and after terminal or hydrogen peroxide disinfection using a sponge swab. In some rooms, individual sites were not present (eg, there were no en-suite rooms in the ICU). Swab contents were homogenized, concentrated by membrane-filtration, and plated onto selective media. Results of C. difficile sampling were used to focus cleaning.

RESULTS

Over 1 year, 2,529 sites from 146 rooms and 44 bays were sampled. Clostridium difficile was found on 131 of 572 surfaces (22.9%) before terminal cleaning, on 105 of 959 surfaces (10.6%) after terminal cleaning, and on 43 of 967 surfaces (4.4%) after hydrogen peroxide disinfection. Clostridium difficile persisted most frequently on floor corners (97 of 334; 29.0%) after disinfection. Between the first and third quarters, we observed a significant decrease in the number of positive sites (25 of 390 vs 6 of 256). However, no similar change in the number of isolates before terminal cleaning was observed.

CONCLUSION

Persistence of C. difficile in the clinical environment was widespread. Although feedback of results did not improve the efficacy of manual disinfection, numbers of C. difficile following hydrogen peroxide gradually declined.

Infect Control Hosp Epidemiol 2017;38:1487–1492

Copyright
Corresponding author
Address correspondence to A. Peter R. Wilson, MD, Department of Clinical Microbiology & Virology, University College London Hospitals, 60 Whitfield Street, London W1T 4EU, UK. Tel. +44 2034479516; fax: +44 02034479211; peter.wilson@uclh.nhs.uk
References
Hide All
1. Zhang, S, Palazuelos-Munoz, S, Balsells, EM, Nair, H, Chit, A, Kyaw, MH. Cost of hospital management of Clostridium difficile infection in United States—a meta-analysis and modelling study. BMC Infect Dis 2016;16:447.
2. Ali, S, Moore, G, Wilson, APR. Spread and persistence of Clostridium difficile spores during and after cleaning with sporicidal disinfectants. J Hosp Infect 2011;79:9398.
3. Ali, S, Muzslay, M, Bruce, M, Jeanes, A, Moore, G, Wilson, AP. Efficacy of two hydrogen peroxide vapour aerial decontamination systems for enhanced disinfection of meticillin-resistant Staphylococcus aureus, Klebsiella pneumoniae and Clostridium difficile in single isolation rooms. J Hosp Infect 2016;93:7077.
4. Ali, S, Muzslay, M, Wilson, P. A Novel quantitative sampling technique for detection and monitoring of Clostridium difficile contamination in the clinical environment. J Clin Microbiol 2015;53:25702574.
5. Humphreys, PN, Finan, P, Rout, S, et al. A systematic evaluation of peracetic acid–based high performance disinfectant. J Infect Prevent 2013;14:126131.
6. Ali, S, Yui, S, Muzslay, M, Wilson, APR. Response to letter of Singh K ‘Role of silver nitrate in the efficacy of hydrogen peroxide aerial decontamination systems’ regarding S Ali et al. ‘Efficacy of two hydrogen peroxide vapour aerial decontamination systems for enhanced disinfection of methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae and Clostridium difficile in single isolation rooms. J Hosp Infect 2017;pii: S0195-6701(17):3039830405.
7. Otter, JA, Yezli, S, Salkeld, JA, French, GL. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am J Infect Control 2013;41(5 Suppl):S6S11.
8. Mitchell, BG, Dancer, SJ, Anderson, M, Dehn, E. Risk of organism acquisition from prior room occupants: a systematic review and meta-analysis. J Hosp Infect 2015;91:211217.
9. Freedberg, DE, Salmasian, H, Cohen, B. Receipt of antibiotics in hospitalized patients and risk for Clostridium difficile infection in subsequent patients who occupy the same bed. JAMA Intern Med 2016;176:18011808.
10. Eyre, DW, Cule, ML, Wilson, DJ, et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med 2013;369:11951205.
11. Pegues, DA, Han, J, Gilmar, C, McDonnell, B, Gaynes, S. Impact of ultraviolet germicidal irradiation for no-touch terminal room disinfection on Clostridium difficile infection incidence among hematology-oncology patients. Infect Control Hosp Epidemiol 2017;38:3944.
12. McCord, J, Prewitt, M, Dyakova, E, Mookerjee, S, Otter, JA. Reduction in Clostridium difficile infection associated with the introduction of hydrogen peroxide vapour automated room disinfection. J Hosp Infect 2016;94:185187.
13. Anderson, DJ, Chen, LF, Weber, DJ, et al. Enhanced terminal room disinfection and acquisition and infection caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal Room Disinfection study): a cluster-randomised, multicentre, crossover study. Lancet 2017;389:805814.
14. Effective health care program. Environmental cleaning for the prevention of healthcare-associated infections. Technical Brief No. 22. Agency for Healthcare Research and Quality website. https://www.effectivehealthcare.ahrq.gov/ehc/products/592/2103/healthcare-infections-report-150810.pdf. Published 2015. Accessed October 16, 2017.
15. Smith, A, Taggart, LR, Lebovic, G, Zeynalova, N, Khan, A, Muller, MP. Clostridium difficile infection incidence: impact of audit and feedback programme to improve room cleaning. J Hosp Infect 2016;92:161166.
16. Moore, G, Smyth, D, Singleton, J, Wilson, P. The use of adenosine triphosphate bioluminescence to assess the efficacy of a modified cleaning program implemented within an intensive care setting. Am J Infect Control 2010;38:617622.
17. Gray, JJ. Cleaning up after carbapenemase-producing organisms. J Hosp Infect 2016;93:135.
18. Boyce, JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control 2016;5:10.
19. Otter, JA, French, GL. Survival of nosocomial bacteria and spores on surfaces and inactivation by hydrogen peroxide vapor. J Clin Microbiol 2009;47:205207.
20. Blazejewski, C, Wallet, F, Rouzé, A, et al. Efficiency of hydrogen peroxide in improving disinfection of ICU rooms. Crit Care 2015;19:30.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 17
Total number of PDF views: 192 *
Loading metrics...

Abstract views

Total abstract views: 1734 *
Loading metrics...

* Views captured on Cambridge Core between 16th November 2017 - 23rd June 2018. This data will be updated every 24 hours.