Skip to main content Accessibility help
×
Home

Impact of Host Heterogeneity on the Efficacy of Interventions to Reduce Staphylococcus aureus Carriage

  • Qiuzhi Chang (a1), Marc Lipsitch (a1) and William P. Hanage (a1)

Abstract

BACKGROUND

Staphylococcus aureus is a common cause of bacterial infections worldwide. It is most commonly carried in and transmitted from the anterior nares. Hosts are known to vary in their proclivity for S. aureus nasal carriage and may be divided into persistent carriers, intermittent carriers, and noncarriers, depending on duration of carriage. Mathematical models of S. aureus to predict outcomes of interventions have, however, typically assumed that all individuals are equally susceptible to colonization.

OBJECTIVE

To characterize biases created by assuming a homogeneous host population in estimating efficacy of control interventions.

DESIGN

Mathematical model.

METHODS

We developed a model of S. aureus carriage in the healthcare setting under the homogeneous assumption as well as a heterogeneous model to account for the 3 types of S. aureus carriers. In both models, we calculated the equilibrium carriage prevalence to predict the impact of control measures (reducing contact and decolonization).

RESULTS

The homogeneous model almost always underestimates S. aureus transmissibility and overestimates the impact of intervention strategies in lowering carriage prevalence compared to the heterogeneous model. This finding is generally consistent regardless of changes in model setting that vary the proportions of various carriers in the population and the duration of carriage for these carrier types.

CONCLUSIONS

Not accounting for host heterogeneity leads to systematic and substantial biases in predictions of the effects of intervention strategies. Further understanding of the clinical impacts of heterogeneity through modeling can help to target control measures and allocate resources more efficiently.

Infect. Control Hosp. Epidemiol. 2016;37(2):197–204

Copyright

Corresponding author

Address correspondence to Qiuzhi Chang, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115 (qic716@mail.harvard.edu).

Footnotes

Hide All
*

Contributed equally to this manuscript.

Footnotes

References

Hide All
1. Chambers, HF, Deleo, FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009;7:629641.
2. Chambers, HF. The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 2001;7:178182.
3. Kuehnert, MJ, Kruszon-Moran, D, Hill, HA, et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J Infect Dis 2006;193:172179.
4. Miller, LG, Diep, BA. Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 2008;46:752760.
5. Eriksen, NH, Espersen, F, Rosdahl, VT, Jensen, K. Carriage of Staphylococcus aureus among 104 healthy persons during a 19-month period. Epidemiol Infect 1995;115:5160.
6. Hu, L, Umeda, A, Kondo, S, Amako, K. Typing of Staphylococcus aureus colonising human nasal carriers by pulsed-field gel electrophoresis. J Med Microbiol 1995;42:127132.
7. Williams, R. Healthy carriage of Staphylococcus aureus: its prevalence and importance. Bacteriol Rev 1963;27:5671.
8. Wertheim, HFL, Melles, DC, Vos, MC, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 2005;5:751762.
9. Huang, SS, Septimus, E, Kleinman, K, et al. Targeted versus universal decolonization to prevent ICU infection. N Engl J Med 2013;368:22552265.
10. Bootsma, MCJ, Diekmann, O, Bonten, MJM. Controlling methicillin-resistant Staphylococcus aureus: quantifying the effects of interventions and rapid diagnostic testing. Proc Natl Acad Sci U S A 2006;103:56205625.
11. Cooper, BS, Medley, GF, Stone, SP, et al. Methicillin-resistant Staphylococcus aureus in hospitals and the community: stealth dynamics and control catastrophes. Proc Natl Acad Sci U S A 2004;101:1022310228.
12. McBryde, ES, Pettitt, AN, McElwain, DLS. A stochastic mathematical model of methicillin resistant Staphylococcus aureus transmission in an intensive care unit: predicting the impact of interventions. J Theor Biol 2007;245:470481.
13. D’Agata, EMC, Webb, GF, Horn, MA, Moellering, RC, Ruan, S. Modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureus into hospitals. Clin Infect Dis 2009;48:274284.
14. Wang, X, Panchanathan, S, Chowell, G. A data-driven mathematical model of CA-MRSA transmission among age groups: evaluating the effect of control interventions. PLoS Comput Biol 2013;9:e1003328.
15. Lee, BY, McGlone, SM, Wong, KF, et al. Modeling the spread of methicillin-resistant Staphylococcus aureus (MRSA) outbreaks throughout the hospitals in Orange County, California. Infect Control Hosp Epidemiol 2011;32:562572.
16. Simon, CP, Percha, B, Riolo, R, Foxman, B. Modeling bacterial colonization and infection routes in health care settings: analytic and numerical approaches. J Theor Biol 2013;334:187199.
17. Chamchod, F, Ruan, S. Modeling methicillin-resistant Staphylococcus aureus in hospitals: transmission dynamics, antibiotic usage and its history. Theor Biol Med Model 2012;9:25.
18. Forrester, M, Pettitt, AN. Use of stochastic epidemic modeling to quantify transmission rates of colonization with methicillin-resistant Staphylococcus aureus in an intensive care unit. Infect Control Hosp Epidemiol 2005;26:598606.
19. Wertheim, HFL, Vos, MC, Ott, A, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet, 364:703705.
20. Von Eiff, C, Becker, K, Machka, K, Stammer, H, Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 2001;344:1116.
21. Van Belkum, A, Verkaik, NJ, de Vogel, CP, et al. Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis 2009;199:18201826.
22. Kluytmans, J, van Belkum, A, Verbrugh, H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 1997;10:505520.
23. Hogea, C, van Effelterre, T, Acosta, CJ. A basic dynamic transmission model of Staphylococcus aureus in the US population. Epidemiol Infect 2014;142:468478.
24. Sébille, V, Chevret, S, Valleron, AJ. Modeling the spread of resistant nosocomial pathogens in an intensive-care unit. Infect Control Hosp Epidemiol 1997;18:8492.
25. Kuulasmaa, K. The spatial general epidemic and locally dependent random graphs. J Appl Probab 1982;19:745758.
26. Bonten, M, Bootsma, M. Nosocomial transmission: methicillin-resistant Staphylococcus aureus (MRSA). In: Krämer A, Kretzschmar M, Krickeberg K, eds. Modern Infectious Disease Epidemiology Statistics for Biology and Health. New York, NY: Springer New York, 2010:395407.
27. May, RM, Anderson, RM. Transmission dynamics of HIV infection. Nature 1987;326:137142.
28. Smith, DL, Dushoff, J, McKenzie, FE. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2004;2:e368.
29. Del Campo, R, Sánchez-Díaz, AM, Zamora, J, et al. Individual variability in finger-to-finger transmission efficiency of Enterococcus faecium clones. Microbiologyopen 2014;3:128132.
30. Harbarth, S, Dharan, S, Liassine, N, Herrault, P, Auckenthaler, R, Pittet, D. Randomized, placebo-controlled, double-blind trial to evaluate the efficacy of mupirocin for eradicating carriage of methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother 1999;43:14121416.
Type Description Title
WORD
Supplementary materials

Chang supplementary material S1
Supplementary Figures

 Word (234 KB)
234 KB
WORD
Supplementary materials

Chang supplementary material S2
Supplementary Figures

 Word (105 KB)
105 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed