Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-02T08:33:55.248Z Has data issue: false hasContentIssue false

Mycobacterium avium Complex Common-Source or Cross-Infection in AIDS Patients Attending the Same Day-Care Facility

Published online by Cambridge University Press:  02 January 2015

Anne Carbonne*
Affiliation:
Laboratoire de Bactériologie, Hôpital Pitié-Salpêtrière, Paris, France
Nadine Lemaitre
Affiliation:
Laboratoire de Bactériologie, Hôpital Pitié-Salpêtrière, Paris, France
Marie Bochet
Affiliation:
Service des maladies infectieuses, Hôpital Pitié-Salpêtrière, Paris, France
Chantal Truffot-Pernot
Affiliation:
Laboratoire de Bactériologie, Hôpital Pitié-Salpêtrière, Paris, France
Christine Katlama
Affiliation:
Service des maladies infectieuses, Hôpital Pitié-Salpêtrière, Paris, France
Jacques Grosset
Affiliation:
Laboratoire de Bactériologie, Hôpital Pitié-Salpêtrière, Paris, France
François Bricaire
Affiliation:
Service des maladies infectieuses, Hôpital Pitié-Salpêtrière, Paris, France
Vincent Jarlier
Affiliation:
Laboratoire de Bactériologie, Hôpital Pitié-Salpêtrière, Paris, France
*
Laboratoire de Bactériologie, Faculté Pitié-Salpêtrière, 91, Boulevard de l'Hôpital, 75013 Paris, France

Abstract

To delineate the epidemiology of Mycobacterium avium complex (MAC) infection in acquired immunodeficiency syndrome patients, we studied 32 case patients with disseminated MAC infection who attended the same daycare facility during a period of 13 months. Pulsed-field gel electrophoresis analysis showed very low similarity between MAC strains, suggesting that, despite close contacts between the patients, nosocomial cross-transmission or exposure to a common source of MAC did not occur

Type
Concise Communications
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nightingale, SD, Byrd, LT, Southern, PM, Jockusch, JD, Cal, SX, Wynne, BA. Incidence of Mycobacterium avium-intracellulare complex bacteremia in human immunodeficiency virus-positive patients. J Infect Dis 1992;165:10821085.Google Scholar
2.Falkinham, JO III.Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev 1996;9:177215.Google Scholar
3.Havlik, JA Jr, Beverly, M, Thompson, SE III, Barret, K, Rimland, D, Horsburgh, CR Jr.Prospective evaluation of Mycobacterium avium complex colonization of the respiratory and gastrointestinal tracts of persons with human immunodeficiency virus infection. J Infect Dis 1993;168:10451048.Google Scholar
4.Jacobson, MA, Hopewell, Yajko DM, Hadley, WK, Lazarus, E, Mohanly, PK, et al. Natural history of disseminated Mycobacterium avium complex infection in AIDS. J Infect Dis 1991;164:994998.Google Scholar
5.Arbeit, RD, Slutsky, A, Barber, TW, Maslow, JN, Niemczyk, S, Falkinham, JO III, et al. Genetic diversity among strains of Mycobacterium avium causing monoclonal and polyclonal bacteremia in patients with AIDS. J Infect Dis 1993;167:13841390.Google Scholar
6.Mazurek, GH, Hartman, S, Zhang, Y, Brown, BA, Hector, JSR, Murphy, D, et al. Large DNA restriction fragment length polymorphism in the Mycobacterium avium-M intracellulare complex: a potential epidemio- logic tool. J Clin Microbiol 1993;31:390394.Google Scholar
7.Slutsky, AM, Arbeit, RD, Barber, TW, Rich, J, von Reyn, CF, Pieciak, W, et al. Polyclonal infections due to Mycobacterium avium complex in patients with AIDS detected by pulsed-field gel electrophoresis of sequential clinical isolates. J Clin Microbiol 1994;32:17731778.Google Scholar
8.Burki, DR, Bernasconi, C, Bodmer, T, Telenti, A. Evaluation of the relatedness of strains of Mycobacterium avium using pulsed-field gel electrophoresis. Eur J Clin Microbiol Infect Dis 1995;14:212217.Google Scholar
9.Guerrero, C, Bernasconi, C, Burki, D, Bodmer, T, Telenti, A. A novel element from Mycobacterium avium, IS1245, is a specific target for analysis of strain relatedness. J Clin Microbiol 1995;33:304307.Google Scholar
10.Roiz, MP, Palenque, E, Guerrero, C, Garcia, MJ. Use of restriction fragment length polymorphism as a genetic marker for typing Mycobacteri-um avium strains. J Clin Microbiol 1995;33:13891391.Google Scholar
11.Picardeau, M, Vincent, V. Typing of Mycobacterium avium isolates by PCR. J Clin Microbiol 1996;34:389392.Google Scholar
12.Li, WH. Simple method for constructing philogenetic trees from distance matrices. Proc Natl Acad Sci USA 1981;78:10851089.Google Scholar
13.Hunter, PR, Gaston, MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 1988;26:24652466.Google Scholar
14.Von Reyn, CF, Maslow, JN, Barber, TW, Falkinham, JO III, Arbeit, RD. Persistant colonisation of potable water as a source of Mycobacterium avium infection in AIDS patients. Lancet 1994;343:11371141.Google Scholar
15.Picardeau, M, Varnerot, A, Lecompte, T, Brel, F, May, T, Vincent, V. Use of different molecular typing techniques for bacteriological follow-up in a clinical trial with AIDS patients with Mycobacterium avium bacteremia. J Clin Microbiol 1997;35:25032510.Google Scholar