Skip to main content Accessibility help

Optimal Frequency of Changing Intravenous Administration Sets: Is It Safe to Prolong Use Beyond 72 Hours?

  • Issam Raad (a1), Hend A. Hanna (a1), Abeer Awad (a2), Amin Alrahwan (a3), Carol Bivins (a1), Asma Khan (a1), Deborah Richardson (a1), Jan L. Umphrey (a1), Estella Whimbey (a1) and Georganne Mansour (a1)...



To determine the safety and cost-effectiveness of replacing the intravenous (TV) tubing sets in hospitalized patients at 4- to 7-day intervals instead of every 72 hours.


Prospective, randomized study of infusion-related contamination associated with changing IV tubing sets within 3 days versus within 4 to 7 days of placement.


A tertiary university cancer center.

Patients and Methods:

Cancer patients requiring IV infusion therapy were randomized to have the IV tubing sets replaced within 3 days (280 patients) or within 4 to 7 days of placement (232 patients). Demographic, microbiological, and infusion-related data were collected for all participants. The main outcome measures were infusion- or catheter-related contamination or colonization of IV tubing, determined by quantitative cultures of the infusate, and infusion- or catheter-related bloodstream infection (BSI), determined by quantitative culture of the infusate in association with blood cultures in febrile patients.


The two groups were comparable in terms of patient and catheter characteristics and the agents given through the IV tubing. Intent-to-treat analysis demonstrated a higher level of tubing colonization in the 4- to 7-day group versus the 3-day group (median, 145 vs 50 colony-forming units; P=.02). In addition, there were three episodes of possible infusion-related BSIs, all of which occurred in the 4- to 7-day group (P=.09). However, when the 84 patients who received total parenteral nutrition, blood transfusions, or interleukin-2 through the IV tubing were excluded, the two groups had a comparable rate of colonization (0.4% vs 0.5%), with no catheter- or infusion-related BSIs in either group.


In patients at low risk for infection from infusion- or catheter-related infection who are not receiving total parenteral nutrition, blood transfusions, or interleukin-2, delaying the replacement of IV tubing up to 7 days may be safe, as well as cost-effective.


Corresponding author

The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd. Houston, TX 77030


Hide All
1. Pearson, ML, the Hospital Infection Control Practices Advisory Committee. Guideline for prevention of intravascular device-related infections. Infect Control Hosp Epidemiol 1996;17:438473.
2. Maki, DG, Stolz, SM, Wheeler, S, Mermel, LA. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized, controlled trial. Ann Intern Med 1997;127:257266.
3. Maki, DG, Rhame, FS, Mackel, DC, Bennett, JV. Nationwide epidemic of septicemia caused by contaminated intravenous products. Am J Med 1976;60:471485.
4. Centers for Disease Control and Prevention. Nosocomial bacteremia associated with intravenous fluid therapy. MMWR 1971;20(suppl 9):12.
5. Buxton, AE, Highsmith, AK, Garner, JS, West, CM, Stamm, WE, Dixon, RE, et al. Contamination of intravenous fluid: effects of changing administration sets. Ann Intern Med 1979;90:764768.
6. Band, JD, Maki, DG. Safety of changing intravenous delivery systems at longer than 24-hour intervals. Ann Intern Med 1979;91:173178.
7. Gorbea, HE, Snydman, DR, Delaney, A, Stockman, J, Martin, WJ. Intravenous tubing with burettes can be safely changed at 48-hour intervals. JAMA 1984;251:21122115.
8. Snydman, DR, Donnelly-Reidy, M, Perry, LK, Martin, WJ. Intravenous tubing containing burettes can be safely changed at 72-hour intervals. Infect Control 1987;8:113116.
9. Maki, DG, Botticelli, JT, LeRoy, ML, Thielke, TS. Prospective study of replacing administration sets for intravenous therapy at 48- vs 72-hour intervals. 72 hours is safe and cost-effective. JAMA 1987;258:17771781.
10. Josephson, A, Gombert, ME, Sierra, MF, Karanfil, LV, Tansino, GF. The relationship between intravenous fluid contamination and the frequency of tubing replacement. Infect Control 1985;6:366370.
11. Snydman, DR, Sullivan, B, Gill, M, Gould, JA, Parkinson, DR, Atkins, MB. Nosocomial sepsis associated with interleukin-2. Ann Intern Med 1990;112:102107.
12. Pockaj, BA, Topalian, SL, Steinberg, SM, White, DE, Rosenbert, SA. Infectious complications associated with interleukin-2 administration: a retrospective review of 935 treatment courses. J Clin Oncol 1993;11:136147.
13. Richards, JM, Gilewski, TA, Vogelzang, NJ. Association of interleukin-2 therapy with staphylococcal bacteremia. Cancer 1991;67:15701575.
14. Lim, SH, Giles, FJ, Smith, MP, Goldston, AH. Bacterial infections in lymphoma patients treated with recombinant interleukin-2. Acta Haematol 1991;85:135138.
15. Raad, II, Hachem, RY, Abi-Said, D, Rolston, KV, Whimbey, E, Buzaid, AC, et al. A prospective crossover randomized trial of novobiocin and rifampin prophylaxis for the prevention of intravascular catheter infections in cancer patients treated with interleukin-2. Cancer 1998;82:403411.
16. Matlow, AG, Kital, I, Kirpalani, H, Chapman, NH, Corey, M, Perlman, M, et al. A randomized trial of 72- versus 24-hour intravenous tubing set changes in newborns receiving lipid therapy. Infect Control Hosp Epidemiol 1999;20:487493.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed