Skip to main content
×
×
Home

Reduction of Environmental Contamination With Multidrug-Resistant Bacteria by Copper-Alloy Coating of Surfaces in a Highly Endemic Setting

  • Maria Souli (a1), Anastasia Antoniadou (a1), Ioannis Katsarolis (a1), Irini Mavrou (a2), Elisabeth Paramythiotou (a2), Evangelos Papadomichelakis (a2), Maria Drogari-Apiranthitou (a1), Theofano Panagea (a1) (a3), Helen Giamarellou (a4), George Petrikkos (a1) and Apostolos Armaganidis (a2)...
Abstract
OBJECTIVE

To evaluate the efficacy of copper-coating in reducing environmental colonization in an intensive-care unit (ICU) with multidrug-resistant-organism (MDRO) endemicity

DESIGN

Interventional, comparative crossover trial

SETTING

The general ICU of Attikon University hospital in Athens, Greece

PATIENTS

Those admitted to ICU compartments A and B during the study period

METHODS

Before any intervention (phase 1), the optimum sampling method using 2 nylon swabs was validated. In phase 2, 6 copper-coated beds (ie, with coated upper, lower, and side rails) and accessories (ie, coated side table, intravenous [i.v.] pole stands, side-cart handles, and manual antiseptic dispenser cover) were introduced as follows: During phase 2a (September 2011 to February 2012), coated items were placed next to noncoated ones (controls) in both compartments A and B; during phase 2b (May 2012 to January 2013), all copper-coated items were placed in compartment A, and all noncoated ones (controls) in compartment B. Patients were randomly assigned to available beds. Environmental samples were cultured quantitatively for clinically important bacteria. Clinical and demographic data were collected from medical records.

RESULTS

Copper coating significantly reduced the percentage of colonized surfaces (55.6% vs 72.5%; P<.0001), the percentage of surfaces colonized by MDR gram-negative bacteria (13.8% vs 22.7%; P=.003) or by enterococci (4% vs 17%; P=.014), the total bioburden (2,858 vs 7,631 cfu/100 cm2; P=.008), and the bioburden of gram-negative isolates, specifically (261 vs 1,266 cfu/100 cm2; P=.049). This effect was more pronounced when the ratio of coated surfaces around the patient was increased (phase 2b).

CONCLUSIONS

Copper-coated items in an ICU setting with endemic high antimicrobial resistance reduced environmental colonization by MDROs.

Infect Control Hosp Epidemiol 2017;38:765–771

Copyright
Corresponding author
Address correspondence to Maria Souli, 4th Department of Internal Medicine, University General Hospital Attikon, 1 Rimini Str. 124 62 Chaidari, Athens, Greece (msouli@med.uoa.gr).
Footnotes
Hide All

PREVIOUS PRESENTATION. These data were presented in part at the 52nd Interscience Conference of Antimicrobial Agents and Chemotherapy, San Francisco, California, on September 9, 2012 (Abstracts K245 and K246).

Footnotes
References
Hide All
1. Weber, DJ, Anderson, D, Rutala, WA. The role of the surface environment in healthcare-associated infections. Curr Opin Infect Dis 2013;26:338344.
2. Siegel, JD, Rhinehart, E, Jackson, M, Chiarello, L. Healthcare Infection Control Practices Advisory Committee. Management of multidrug resistant organisms in health-care settings, 2006. Am J Infect Control 2007;35(10 Suppl 2):S165S193.
3. Manian, FA, Griesenauer, S, Senkel, D, et al. Isolation of Acinetobacter baumannii complex and methicillin-resistant Staphylococcus aureus from hospital rooms following terminal cleaning and disinfection: can we do better? Infect Control Hosp Epidemiol 2011;32:667672.
4. Weber, DJ, Rutala, WA. Self-disinfecting surfaces: review of current methodologies and future prospects. Am J Infect Control 2013;41(5 Suppl):S31S35.
5. Souli, M, Galani, I, Plachouras, D, et al. Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary gram-negative clinical isolates. J Antimicrob Chemother 2013;68:852857.
6. Environmental Protection Agency registers copper-containing alloy products. United States Environmental Protection Agency website. http://www.epa.gov/pesticides/factsheets/copper-alloy-products.htm. Published 2008. Accessed November 26, 2016.
7. Casey, AL, Adams, D, Karpanen, TJ, et al. Role of copper in reducing hospital environment contamination. J Hosp Infect 2010;74:7277.
8. Marais, F, Mehtar, S, Chalkley, L. Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. J Hosp Infect 2010;74:8081.
9. Mikolay, A, Huggett, S, Tikana, L, et al. Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 2010;87:18751879.
10. Rai, S, Hirsch, BE, Attaway, HH, et al. Evolution of the antimicrobial properties of copper surfaces in an outpatient infectious disease practice. Infect Control Hosp Epidemiol 2012;33:200201.
11. Karpanen, TJ, Casey, AL, Lambert, PA, et al. The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a crossover study. Infect Control Hosp Epidemiol 2012;33:39.
12. Schmidt, MG, von Dessauer, B, Benavente, C, et al. Copper surfaces are associated with significantly lower concentrations of bacteria on selected surfaces within a pediatric intensive care unit. Am J Infect Control 2016;44:203209.
13. Hinsa-Leasure, SM, Nartey, Q, Vaverka, J, Schmidt, MG. Copper alloy surfaces sustain terminal cleaning levels in a rural hospital. Am J Infect Control 2016;44:e195e203.
14. Salgado, CD, Sepkowitz, KA, John, JF, et al. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol 2013;34:479486.
15. von Dessauer, B, Navarrete, MS, Benadof, D, Benavente, C, Schmidt, MG. Potential effectiveness of copper surfaces in reducing health care–associated infection rates in a pediatric intensive and intermediate care unit: a nonrandomized controlled trial. Am J Infect Control 2016;44:e133e139.
16. Sifri, CD, Burke, GH, Enfield, KB. Reduced health care–associated infections in an acute care community hospital using a combination of self-disinfecting copper-impregnated composite hard surfaces and linens. Am J Infect Control 2016 Sep 28. pii: S0196-6553(16)30696–4.
17. Koratzanis, E, Souli, M, Galani, I, Chryssouli, Z, Armaganidis, A, Giamarellou, H. Epidemiology and molecular characterization of metallo-β-lactamase–producing Enterobacteriaceae in a University Hospital Intensive Care Unit in Greece. Int J Antimicrob Agents 2011;38:390397.
18. WHO guidelines on hand hygiene in health-care: observation tool. World Health Organization website. http://www.who.int/gpsc/5may/tools/en/. Published 2009. Accessed November 26, 2016.
19. Hedin, G, Rynbäck, J, Loré, B. New technique to take samples from environmental surfaces using flocked nylon swabs. J Hosp Infect 2010;75:314317.
20. Schmidt, MG, Attaway, HH, Sharpe, PA, et al. Sustained reduction of microbial burden on common hospital surfaces through introduction of copper. J Clin Microbiol 2012;50:22172223.
21. Magiorakos, AP, Srinivasan, A, Carey, RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268281.
22. Dancer, SJ. Hospital cleaning in the 21st century. Eur J Clin Microbiol Infect Dis 2011;30:14731481.
23. Michels, HT, Keevil, CW, Saldago, CD, Schmidt, MG. From laboratory research to a clinical trial: copper alloy surfaces kill bacteria and reduce hospital-acquired infections. HERD 2015;9:6479.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary materials

Souli supplementary material
Tables S1 and S2

 Word (14 KB)
14 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed