Skip to main content Accessibility help
×
×
Home

Relationship between Chlorhexidine Gluconate Skin Concentration and Microbial Density on the Skin of Critically Ill Patients Bathed Daily with Chlorhexidine Gluconate

  • Kyle J. Popovich (a1) (a2), Rosie Lyles (a2), Robert Hayes (a1), Bala Hota (a1) (a2), William Trick (a2), Robert A. Weinstein (a1) (a2) and Mary K. Hayden (a1)...

Abstract

Objective and Design.

Previous work has shown that daily skin cleansing with Chlorhexidine gluconate (CHG) is effective in preventing infection in the medical intensive care unit (MICU). A colorimetric, semiquantitative indicator was used to measure CHG concentration on skin (neck, antecubital fossae, and inguinal areas) of patients bathed daily with CHG during their MICU stay and after discharge from the MICU, when CHG bathing stopped.

Patients and Setting.

MICU patients at Rush University Medical Center.

Methods.

CHG concentration on skin was measured and skin sites were cultured quantitatively. The relationship between CHG concentration and microbial density on skin was explored in a mixed-effects model using gram-positive colony-forming unit (CFU) counts.

Results.

For 20 MICU patients studied (240 measurements), the lowest CHG concentrations (0–18.75 μg/mL) and the highest gram-positive CFU counts were on the neck (median, 1.07 log10 CFUs; P = .014). CHG concentration increased postbath and decreased over 24 hours (P < .001). In parallel, median log10 CFUs decreased pre- to postbath (0.78 to 0) and then increased over 24 hours to the baseline of 0.78 (P = .001). A CHG concentration above 18.75 μg/mL was associated with decreased gram-positive CFUs (P = .004). In all but 2 instances, CHG was detected on patient skin during the entire interbath (approximately 24-hour) period (18 [90%] of 20 patients). In 11 patients studied after MICU discharge (80 measurements), CHG skin concentrations fell below effective levels after 1–3 days.

Conclusion.

In MICU patients bathed daily with CHG, CHG concentration was inversely associated with microbial density on skin; residual antimicrobial activity on skin persisted up to 24 hours. Determination of CHG concentration on the skin of patients may be useful in monitoring the adequacy of skin cleansing by healthcare workers.

Copyright

Corresponding author

Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612 (kyle_popovich@rush.edu)

References

Hide All
1. O'Grady, NP, Alexander, M, Burns, LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis 2011;52(9):e162e193.
2. Muto, CA, Jernigan, JA, Ostrowsky, BE, et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and Enterococcus . Infect Control Hosp Epidemiol 2003;24(5):362386.
3. Larson, EL, McGinley, KJ, Foglia, AR, Talbot, GH, Leyden, JJ. Composition and antimicrobic resistance of skin flora in hospitalized and healthy adults. J Clin Microbiol 1986;23(3):604608.
4. Fridkin, SK, Gaynes, RR Antimicrobial resistance in intensive care units. Clin Chest Med 1999;20(2):303316, viii.
5. O'Grady, NR Alexander, M, Dellinger, ER et al. Guidelines for the prevention of intravascular catheter-related infections. Infect Control Hosp Epidemiol 2002;23(12):759769.
6. Vernon, MO, Hayden, MK, Trick, WE, Hayes, RA, Blom, DW, Weinstein, RA. Chlorhexidine gluconate to cleanse patients in a medical intensive care unit: the effectiveness of source control to reduce the bioburden of vancomycin-resistant enterococci. Arch Intern Med 2006;166(3):306312.
7. Bleasdale, SC, Trick, WE, Gonzalez, IM, Lyles, RD, Hayden, MK, Weinstein, RA. Effectiveness of Chlorhexidine bathing to reduce catheter-associated bloodstream infections in medical intensive care unit patients. Arch Intern Med 2007;167(19):20732079.
8. Climo, MW, Sepkowitz, KA, Zuccotti, G, et al. The effect of daily bathing with Chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and healthcare-associated bloodstream infections: results of a quasi-experimental multicenter trial. Crit Care Med 2009;37(6):18581865.
9. Evans, HL, Dellit, TH, Chan, J, Nathens, AB, Maier, RV, Cuschieri, J. Effect of Chlorhexidine whole-body bathing on hospital-acquired infections among trauma patients. Arch Surg 2011;145(3):240246.
10. Popovich, KJ, Hota, B, Hayes, R, Weinstein, RA, Hayden, MK. Effectiveness of routine patient cleansing with Chlorhexidine gluconate for infection prevention in the medical intensive care unit. Infect Control Hosp Epidemiol 2009;30(10):959963.
11. Edmiston, CE Jr, Krepel, CJ, Seabrook, GR, Lewis, BD, Brown, KR, Towne, JB. Preoperative shower revisited: can high topical antiseptic levels be achieved on the skin surface before surgical admission? J Am Coll Surg 2008;207(2):233239.
12. Garland, JS, Alex, CP, Mueller, CD, et al. A randomized trial comparing povidone-iodine to a Chlorhexidine gluconate-impregnated dressing for prevention of central venous catheter infections in neonates. Pediatrics 2001;107(6):14311436.
13. Lowbury, EJ, Lilly, HA. Use of 4 per cent Chlorhexidine detergent solution (Hibiscrub) and other methods of skin disinfection. Br Med J 1973;1(5852):510515.
14. Lorente, L, Henry, C, Martin, MM, Jimenez, A, Mora, ML. Central venous catheter-related infection in a prospective and observational study of 2,595 catheters. Crit Care 2005;9(6):R631R635.
15. Mermel, LA, McCormick, RD, Springman, SR, Maki, DG. The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swan-Ganz catheters: a prospective study utilizing molecular subtyping. Am J Med 1991;91(3B):197S205S.
16. Heard, SO, Wagle, M, Vijayakumar, E, et al. Influence of triple-lumen central venous catheters coated with Chlorhexidine and silver sulfadiazine on the incidence of catheter-related bacteremia. Arch Intern Med 1998;158(1):8187.
17. Vernon, MO, Blom, DW, Hayes, RA, et al. Efficacy of a Chlorhexidine gluconate (CHG) body cleanser for reducing skin contamination with vancomycin-resistant enterococci (VRE) among intensive care unit (ICU) patients. Paper presented at: 43rd Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; September 14-17, 2003; Chicago. Abstract K-1108.
18. Darouiche, RO, Mansouri, MD, Gawande, PV, Madhyastha, S. Efficacy of combination of Chlorhexidine and protamine sulphate against device-associated pathogens. J Antimicrob Chemother 2008;61(3):651657.
19. Koljalg, S, Naaber, P, Mikelsaar, M. Antibiotic resistance as an indicator of bacterial Chlorhexidine susceptibility. J Hosp Infect 2002;51(2):106113.
20. Pittet, D, Mourouga, P, Perneger, TV; Infection Control Program. Compliance with handwashing in a teaching hospital. Ann Intern Med 1999;130(2):126130.
21. Eckmanns, T, Bessert, J, Behnke, M, Gastmeier, P, Rüden, H. Compliance with antiseptic hand rub use in intensive care units: the Hawthorne effect. Infect Control Hosp Epidemiol 2006;27(9):931934.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed