Skip to main content
×
×
Home

Risk Factors for Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae (CP-CRE) Acquisition Among Contacts of Newly Diagnosed CP-CRE Patients

  • Anat Schwartz-Neiderman (a1), Tali Braun (a1), Noga Fallach (a1), David Schwartz (a2), Yehuda Carmeli (a1) (a3) and Vered Schechner (a1)...
Abstract
OBJECTIVE

Carbapenemase-producing carbapenem-resistant Enterobacteriaceae (CP-CRE) are extremely drug-resistant pathogens. Screening of contacts of newly identified CP-CRE patients is an important step to limit further transmission. We aimed to determine the risk factors for CP-CRE acquisition among patients exposed to a CP-CRE index patient.

METHODS

A matched case-control study was performed in a tertiary care hospital in Israel. The study population was comprised of patients who underwent rectal screening for CP-CRE following close contact with a newly identified CP-CRE index patient. Cases were defined as positive tests for CP-CRE. For each case patient, 2 matched controls were randomly selected from the pool of contacts who tested negative for CP-CRE following exposure to the same index case. Bivariate and multivariate analyses were conducted using conditional logistic regression.

RESULTS

In total, 53 positive contacts were identified in 40 unique investigations (896 tests performed on 735 contacts) between October 6, 2008, and June 7, 2012. bla KPC was the only carbapenemase identified. In multivariate analysis, risk factors for CP-CRE acquisition among contacts were (1) contact with an index patient for ≥3 days (odds ratio [OR], 9.8; 95% confidence interval [CI], 2.0–48.9), (2) mechanical ventilation (OR, 4.1; 95% CI, 1.4–11.9), and (3) carriage or infection with another multidrug-resistant organism (MDRO; OR, 2.6; 95% CI, 1.0–7.1). Among patients who received antibiotics, cephalosporins were associated with a lower risk of acquisition.

CONCLUSIONS

Patient characteristics (ventilation and carriage of another MDRO) as well as duration of contact are risk factors for CP-CRE acquisition among contacts. The role of cephalosporins requires further study.

Infect Control Hosp Epidemiol 2016;1–7

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Risk Factors for Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae (CP-CRE) Acquisition Among Contacts of Newly Diagnosed CP-CRE Patients
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Risk Factors for Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae (CP-CRE) Acquisition Among Contacts of Newly Diagnosed CP-CRE Patients
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Risk Factors for Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae (CP-CRE) Acquisition Among Contacts of Newly Diagnosed CP-CRE Patients
      Available formats
      ×
Copyright
Corresponding author
Address correspondence to Vered Schechner, MD, MSc, Division of Epidemiology and Preventive Medicine, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv 64239, Israel (vereds@tlvmc.gov.il).
References
Hide All
1. Falagas, ME, Lourida, P, Poulikakos, P, Rafailidis, PI, Tansarlia, GS. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother 2014;58:654663.
2. Tumbarello, M, Trecarichi, EM, De Rosa, FG, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother 2015;70:21332143.
3. Schwaber, MJ, Klarfeld-Lidji, S, Navon-Venezia, S, Schwartz, D, Leavitt, A, Carmeli, Y. Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother 2008;52:10281033.
4. Gasink, LB, Edelstein, PH, Lautenbach, E, Synnestvedt, M, Fishman, NO. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae . Infect Control Hosp Epidemiol 2009;30:11801185.
5. Fraenkel-Wandel, Y, Raveh-Brawer, D, Wiener-Well, Y, Yinnon, AM., Assous, MV. Mortality due to blaKPC Klebsiella pneumoniae bacteraemia. J Antimicrob Chemother 2016;71:10831087.
6. Pitout, JD, Nordmann, P, Poirel, L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 2015;59:58735884.
7. Schwaber, MJ, Lev, B, Israeli, A, et al. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis 2011;52:848855.
8. Schwaber, MJ, Carmeli, Y. An ongoing national intervention to contain the spread of carbapenem-resistant enterobacteriaceae. Clin Infect Dis 2014;58:697703.
9. Wiener-Well, Y, Rudensky, B, Yinnon, AM, et al. Carriage rate of carbapenem-resistant Klebsiella pneumoniae in hospitalised patients during a national outbreak. J Hosp Infect 2010;74:344349.
10. Patel, G, Huprikar, S, Factor, SH, Jenkins, SG, Calfee, DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 2008;29:10991106.
11. Kitchel, B, Rasheed, JK, Patel, JB, et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 2009;53:33653370.
12. Goren, MG, Carmeli, Y, Schwaber, MJ, Chmelnitsky, I, Schechner, V, Navon-Venezia, S. Transfer of carbapenem-resistant plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in patients. Emerg Infect Dis 2010;16:10141017.
13. Adler, A, Khabra, E, Paikin, S, Carmeli, Y. Dissemination of the blaKPC gene by clonal spread and horizontal gene transfer: comparative study of incidence and molecular mechanisms. 2016. [Epub ahead of print].
14. Sidjabat, HE, Silveira, FP, Potoski, BA, et al. Interspecies spread of Klebsiella pneumoniae carbapenemase gene in a single patient. Clin Infect Dis 2009;49:17361738.
15. Facility guidance for control of carbapenem-resistant Enterobacteriaceae (CRE): November 2015 update—CRE Toolkit. Centers for Disease Control and Prevention website. http://www.cdc.gov/hai/pdfs/cre/CRE-guidance-508.pdf. Accessed on January 8, 2016.
16. Ben-David, D, Maor, Y, Keller, N, et al. Potential role of active surveillance in the control of a hospital-wide outbreak of carbapenem-resistant Klebsiella pneumoniae infection. Infect Control Hosp Epidemiol 2010;31:620626.
17. Calfee, D, Jenkins, SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect Control Hosp Epidemiol 2008;29:966968.
18. Lerner, A, Adler, A, Abu-Hanna, J, Cohen Percia, S, Kazma Matalon, M, Carmeli, Y. Spread of KPC-producing carbapenem-resistant Enterobacteriaceae: the importance of super-spreaders and rectal KPC concentration. Clin Microbiol Infect 2015;21(470):e471e477.
19. Schechner, V, Straus-Robinson, K, Schwartz, D, et al. Evaluation of PCR-based testing for surveillance of KPC-producing carbapenem-resistant members of the Enterobacteriaceae family. J Clin Microbiol 2009;47:32613265.
20. Ellington, MJ, Kistler, J, Livermore, DM, Woodford, N. Multiplex PCR for rapid detection of genes encoding acquired metallo-betallactamases. J Antimicrob Chemother 2007;59:321322.
21. Navon-Venezia, S, Leavitt, A, Schwaber, MJ, et al. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother 2009;53:818820.
22. Katz, S, Ford, AB, Moskowitz, RW, Jackson, BA, Jaffe, MW. Studies of illness in the aged. The index of ADL: a standardized measure of biological and psychosocial function. JAMA 1963;185:914919.
23. Swaminathan, M, Sharma, S, Poliansky Blash, S, et al. Prevalence and risk factors for acquisition of carbapenem-resistant Enterobacteriaceae in the setting of endemicity. Infect Control Hosp Epidemiol 2013;34:809817.
24. Chitnis, AS, Caruthers, PS, Rao, AK, et al. Outbreak of carbapenem-resistant enterobacteriaceae at a long-term acute care hospital: sustained reductions in transmission through active surveillance and targeted interventions. Infect Control Hosp Epidemiol 2012;33:984992.
25. Tosh, PK, McDonald, LC. Infection control in the multidrug-resistant era: tending the human microbiome. Clin Infect Dis 2012;54:707713.
26. Ahn, JY, Song, JE, Kim, MH, et al. Risk factors for the acquisition of carbapenem-resistant Escherichia coli at a tertiary care center in South Korea: a matched case-control study. Am J Infect Control 2014;42:621625.
27. Ling, ML, Tee, YM, Tan, SG, et al. Risk factors for acquisition of carbapenem resistant Enterobacteriaceae in an acute tertiary care hospital in Singapore. Antimicrob Resist Infect Control 2015;4:26.
28. Kwak, YG, Choi, SH, Choo, EJ, et al. Risk factors for the acquisition of carbapenem-resistant Klebsiella pneumoniae among hospitalized patients. Microb Drug Resist 2005;11:165169.
29. Schechner, V, Temkin, E, Harbarth, S, Carmeli, Y, Schwaber, MJ. Epidemiological interpretation of studies examining the effect of antibiotic usage on resistance. Clin Microbiol Rev 2013;26:289307.
30. Papadimitriou-Olivgeris, M, Marangos, M, Fligou, F, et al. Risk factors for KPC-producing Klebsiella pneumoniae enteric colonization upon ICU admission. J Antimicrob Chemother 2012;67:29762981.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 158
Total number of PDF views: 932 *
Loading metrics...

Abstract views

Total abstract views: 1615 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd May 2018. This data will be updated every 24 hours.