Skip to main content Accessibility help
×
Home

Strategies to Prevent Surgical Site Infections in Acute Care Hospitals

  • Deverick J. Anderson (a1), Keith S. Kaye (a1), David Classen (a2), Kathleen M. Arias (a3), Kelly Podgorny (a4), Helen Burstin (a5), David P. Calfee (a6), Susan E. Coffin (a7), Erik R. Dubberke (a8), Victoria Fraser (a8), Dale N. Gerding (a9) (a10), Frances A. Griffin (a11), Peter Gross (a12) (a13), Michael Klompas (a14), Evelyn Lo (a15), Jonas Marschall (a8), Leonard A. Mermel (a16), Lindsay Nicolle (a15), David A. Pegues (a17), Trish M. Perl (a18), Sanjay Saint (a19), Cassandra D. Salgado (a20), Robert A. Weinstein (a21), Robert Wise (a4) and Deborah S. Yokoe (a14)...

Extract

Previously published guidelines are available that provide comprehensive recommendations for detecting and preventing healthcare-associated infections. The intent of this document is to highlight practical recommendations in a concise format designed to assist acute care hospitals to implement and prioritize their surgical site infection (SSI) prevention efforts. Refer to the Society for Healthcare Epidemiology of America/Infectious Diseases Society of America “Compendium of Strategies to Prevent Healthcare-Associated Infections” Executive Summary and Introduction and accompanying editorial for additional discussion.

1. Burden of SSIs as complications in acute care facilities.

a. SSIs occur in 2%-5% of patients undergoing inpatient surgery in the United States.

b. Approximately 500,000 SSIs occur each year.

2. Outcomes associated with SSI

a. Each SSI is associated with approximately 7-10 additional postoperative hospital days.

b. Patients with an SSI have a 2-11 times higher risk of death, compared with operative patients without an SSI.

i. Seventy-seven percent of deaths among patients with SSI are direcdy attributable to SSI.

c. Attributable costs of SSI vary, depending on the type of operative procedure and the type of infecting pathogen; published estimates range from $3,000 to $29,000.

i. SSIs are believed to account for up to $10 billion annually in healthcare expenditures.

1. Definitions

a. The Centers for Disease Control and Prevention National Nosocomial Infections Surveillance System and the National Healthcare Safety Network definitions for SSI are widely used.

b. SSIs are classified as follows (Figure):

i. Superficial incisional (involving only skin or subcutaneous tissue of the incision)

ii. Deep incisional (involving fascia and/or muscular layers)

iii. Organ/space

Copyright

Corresponding author

University of Chicago Press, 1427 E. 60th St., Chicago, IL 60637 (reprints@press.uchicago.edu) or contact the journal office (iche@press.uchicago.edu).

References

Hide All
1.Cruse, P. Wound infection surveillance. Rev Infect Dis 1981;3:734737.
2.Cruse, PJ, Foord, R. The epidemiology of wound infection: a 10-year prospective study of 62,939 wounds. Surg Clin North Am 1980;60:2740.
3.Engemann, JJ, Carmeli, Y, Cosgrove, SE, et al.Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis 2003;36:592598.
4.Kirkland, KB, Briggs, JP, Trivette, SL, Wilkinson, WE, Sexton, DJ. The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol 1999;20:725730.
5.Mangram, AJ, Horan, TC, Pearson, ML, Silver, LC, Jarvis, WR. Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol 1999;20:250278; quiz 279-280.
6.Coello, R, Glenister, H, Fereres, J, et al.The cost of infection in surgical patients: a case-control study. J Hosp Infect 1993;25:239250.
7.Boyce, JM, Potter-Bynoe, G, Dziobek, L. Hospital reimbursement patterns among patients with surgical wound infections following open heart surgery. Infect Control Hosp Epidemiol 1990;11:8993.
8.Vegas, AA, Jodra, VM, Garcia, ML. Nosocomial infection in surgery wards: a controlled study of increased duration of hospital stays and direct cost of hospitalization. Eur J Epidemiol 1993;9:504510.
9.VandenBergh, MF, Kluytmans, JA, van Hout, BA, et al.Cost-effectiveness of perioperative mupirocin nasal ointment in cardiothoracic surgery. Infect Control Hosp Epidemiol 1996;17:786792.
10.Hollenbeak, CS, Murphy, DM, Koenig, S, Woodward, RS, Dunagan, WC, Fraser, VJ. The clinical and economic impact of deep chest surgical site infections following coronary artery bypass graft surgery. Chest 2000;118:397402.
11.Whitehouse, JD, Friedman, ND, Kirkland, KB, Richardson, WJ, Sexton, DJ. The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost. Infect Control Hosp Epidemiol 2002;23:183189.
12.Apisarnthanarak, A, Jones, M, Waterman, BM, Carroll, CM, Bernardi, R, Fraser, VJ. Risk factors for spinal surgical-site infections in a community hospital: a case-control study. Infect Control Hosp Epidemiol 2003;24:3136.
13.Wong, ES. Surgical site infections. In: Mayhall, CG, ed. Hospital Epidemiology and Infection Control. 3rd ed. Baltimore: Lippincott, Williams, and Wilkins; 2004:287310.
14.Horan, TC, Gaynes, RP, Martone, WJ, Jarvis, WR, Emori, TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol 1992;13:606608.
15. National Healthcare Safety Network (NHSN) members page. Available at: http://www.cdc.gov/ncidod/dhqp/nhsn_members.html. Accessed August 5, 2008.
16.Condon, RE, Schulte, WJ, Malangoni, MA, Anderson-Teschendorf, MJ. Effectiveness of a surgical wound surveillance program. Arch Surg 1983;118:303307.
17.Kerstein, M, Flower, M, Harkavy, LM, Gross, PA. Surveillance for post-operative wound infections: practical aspects. Am Surg 1978;44:210214.
18.Mead, PB, Pories, SE, Hall, P, Vacek, PM, Davis, JH JrGamelli, RL. Decreasing the incidence of surgical wound infections: validation of a surveillance-notification program. Arch Surg 1986;121:458461.
19.Baker, C, Luce, J, Chenoweth, C, Friedman, C. Comparison of case-finding methodologies for endometritis after cesarean section. Am J Infect Control 1995;23:2733.
20.Cardo, DM, Falk, PS, Mayhall, CG. Validation of surgical wound surveillance. Infect Control Hosp Epidemiol 1993;14:211215.
21.Chalfine, A, Cauet, D, Lin, WC, et al.Highly sensitive and efficient computer-assisted system for routine surveillance for surgical site infection. Infect Control Hosp Epidemiol 2006;27:794801.
22.Miner, AL, Sands, KE, Yokoe, DS, et al.Enhanced identification of post-operative infections among outpatients. Emerg Infect Dis 2004;10:19311937.
23.Yokoe, DS, Noskin, GA, Cunnigham, SM, et al.Enhanced identification of postoperative infections among inpatients. Emerg Infect Dis 2004;10:19241930.
24.Burke, JP. Infection control—a problem for patient safety. N Engl J Med 2003;348:651656.
25.Sands, K, Vineyard, G, Platt, R. Surgical site infections occurring after hospital discharge. J Infect Dis 1996;173:963970.
26.Mannien, J, Wille, JC, Snoeren, RL, van den Hof, S. Impact of postdischarge surveillance on surgical site infection rates for several surgical procedures: results from the nosocomial surveillance network in The Netherlands. Infect Control Hosp Epidemiol 2006;27:809816.
27.Culver, DH, Horan, TC, Gaynes, RP, et al.Surgical wound infection rates by wound class, operative procedure, and patient risk index. National Nosocomial Infections Surveillance System. Am J Med 1991;91:152S157S.
28.Pessaux, P, Msika, S, Atalla, D, Hay, JM, Flamant, Y. Risk factors for post-operative infectious complications in noncolorectal abdominal surgery: a multivariate analysis based on a prospective multicenter study of 4718 patients. Arch Surg 2003;138:314324.
29.Raymond, DP, Pelletier, SJ, Crabtree, TD, Schulman, AM, Pruett, TL, Sawyer, RG. Surgical infection and the aging population. Am Surg 2001;67:827832; discussion 832-833.
30.Kaye, KS, Schmit, K, Pieper, C, et al.The effect of increasing age on the risk of surgical site infection. J Infect Dis 2005;191:10561062.
31.Dronge, AS, Perkal, MF, Kancir, S, Concato, J, Asian, M, Rosenthal, RA. Long-term glycemic control and postoperative infectious complications. Arch Surg 2006;141:375380; discussion 380.
32.Forse, RA, Karam, B, MacLean, LD, Christou, NV. Antibiotic prophylaxis for surgery in morbidly obese patients. Surgery 1989;106:750756; discussion 756-757.
33.Bratzler, DW, Houck, PM. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Clin Infect Dis 2004;38:17061715.
34.Haley, RW, Culver, DH, Morgan, WM, White, JW, Emori, TG, Hooton, TM. Identifying patients at high risk of surgical wound infection: a simple multivariate index of patient susceptibility and wound contamination. Am J Epidemiol 1985;121:206215.
35.Bratzler, DW, Hunt, DR. The surgical infection prevention and surgical care improvement projects: national initiatives to improve outcomes for patients having surgery. Clin Infect Dis 2006;43:322330.
36.Dellinger, EP, Hausmann, SM, Bratzler, DW, et al.Hospitals collaborate to decrease surgical site infections. Am J Surg 2005;190:915.
37. Institute for Healthcare Improvement. Available at: http://www.ihi.org/. Accessed May 1, 2007.
38.Medicare program; hospital outpatient prospective payment system and CY 2007 payment rates; CY 2007 update to the ambulatory surgical center covered procedures list; Medicare administrative contractors; and reporting hospital quality data for FY 2008 inpatient prospective payment system annual payment update program—HCAHPS survey, SCIP, and mortality. Final rule with comment period and final rule. Fed Regist 2006;71:6795968401.
39.van Kasteren, ME, Mannien, J, Kullberg, BJ, et al.Quality improvement of surgical prophylaxis in Dutch hospitals: evaluation of a multi-site intervention by time series analysis. J Antimicrob Chemother 2005;56:10941102.
40.Schweon, S. Stamping out surgical site infections. RN 2006;69:3640; quiz 41.
41.Torpy, JM, Burke, A, Glass, RM. JAMA patient page: woun d infections. JAMA 2005;294:2122.
42.Pestotnik, SL, Classen, DC, Evans, RS, Burke, JP. Implementing antibiotic practice guidelines through computer-assisted decision support: clinical and financial outcomes. Ann Intern Med 1996;124:884890.
43.Kanter, G, Connelly, NR, Fitzgerald, J. A system and process redesign to improve perioperative antibiotic administration. Anesth Analg 2006;103:15171521.
44.Webb, AL, Flagg, RL, Fink, AS. Reducing surgical site infections through a multidisciplinary computerized process for preoperative prophylactic antibiotic administration. Am J Surg 2006;192:663668.
45.Berger, RG, Kichak, JP. Computerized physician order entry: helpful or harmful? J Am Med Inform Assoc 2004;11:100103.
46.Canadian Task Force on the Periodic Health Examination. The periodic health examination. Can Med Assoc J 1979;121:11931254.
47.Lee, JT. Wound infection surveillance. Infect Dis Clin North Am 1992;6:643656.
48.Haley, RW, Culver, DH, White, JW, et al.The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol 1985;121:182205.
49.ASHP therapeutic guidelines on antimicrobial prophylaxis in surgery. American Society of Health-System Pharmacists. Am J Health Syst Pharm 1999;56:18391888.
50.Antimicrobial prophylaxis in surgery. Med Lett Drugs Ther 2001;43:9297.
51.Gandhi, GY, Nuttall, GA, Abel, MD, et al.Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial. Ann Intern Med 2007;146:233243.
52.Dodds Ashley, ES, Carroll, DN, Engemann, JJ, et al.Risk factors for post-operative mediastinitis due to methicillin-resistant Staphylococcus aureus. Clin Infect Dis 2004;38:15551560.
53.Bolon, MK, Morlote, M, Weber, SG, Koplan, B, Carmeli, Y, Wright, SB. Glycopeptides are no mor e effective than β-lactam agents for prevention of surgical site infection after cardiac surgery: a meta-analysis. Clin Infect Dis 2004;38:13571363.
54.Brennan, MF, Pisters, PW, Posner, M, Quesada, O, Shike, M. A prospective randomized trial of total parenteral nutrition after major pancreatic resection for malignancy. Ann Surg 1994;220:436441; discussion 441-444.
55.Perioperative total parenteral nutrition in surgical patients. The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. N Engl J Med 1991;325:525532.
56.Kaul, AF, Jewett, JF. Agents and techniques for disinfection of the skin. Surg Gynecol Obstet 1981;152:677685.
57.Webster, J, Osborne, S. Preoperative bathing or showering with skin antiseptics to prevent surgical site infection. Cochrane Database Syst Rev 2007;(2):CD004985.
58.Perl, TM, Cullen, JJ, Wenzel, RP, et al.Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections. N Engl J Med 2002;346:18711877.
59.Miller, MA, Dascal, A, Portnoy, J, Mendelson, J. Development of mupirocin resistance among methicillin-resistant Staphylococcus aureus after wide-spread use of nasal mupirocin ointment. Infect Control Hosp Epidemiol 1996;17:811813.
60.Kallen, AJ, Wilson, CT, Larson, RJ. Perioperative intranasal mupirocin for the prevention of surgical-site infections: systematic review of the literature and meta-analysis. Infect Control Hosp Epidemiol 2005;26:916922.
61.Wilcox, MH, Hall, J, Pike, H, et al.Use of perioperative mupirocin to prevent methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic surgical site infections. J Hosp Infect 2003;54:196201.
62.Nicholson, MR, Huesman, LA. Controlling the usage of intranasal mupirocin does impact the rate of Staphylococcus aureus deep sternal wound infections in cardiac surgery patients. Am J Infect Control 2006;34:4448.
63.McKibben, L, Horan, T, Tokars, JI, et al.Guidance on public reporting of healthcare-associated infections: recommendations of the Healthcare Infection Control Practices Advisory Committee. Am J Infect Control 2005;33:217226.
64.Belda, FJ, Aguilera, L, Garcia de la Asuncion, J, et al.Supplemental perioperative oxygen and the risk of surgical woun d infection: a randomized controlled trial. JAMA 2005;294:20352042.
65.Greif, R, Akca, O, Horn, EP, Kurz, A, Sessler, DI. Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. Outcomes Research Group. N Engl J Med 2000;342:161167.
66.Pryor, KO, Fahey, TJ 3rdLien, CA, Goldstein, PA. Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA 2004;291:7987.
67.Dellinger, EP. Increasing inspired oxygen to decrease surgical site infection: time to shift the quality improvement research paradigm. JAMA 2005;294:20912092.
68.Kurz, A, Sessler, DI, Lenhardt, R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med 1996;334:12091215.
69.Barone, JE, Tucker, JB, Cecere, J, et al.Hypothermia does not result in more complications after colon surgery. Am Surg 1999;65:356359.
70.Segers, P, Speekenbrink, RG, Ubbink, DT, van Ogtrop, ML, de Mol, BA. Prevention of nosocomial infection in cardiac surgery by decontamination of the nasopharynx and oropharynx with chlorhexidine gluconate: a randomized controlled trial. JAMA 2006;296:24602466.
71.Gaynes, RP, Culver, DH, Horan, TC, Edwards, JR, Richards, C, Tolson, JS. Surgical site infection (SSI) rates in the United States, 1992-1998: the National Nosocomial Infections Surveillance System basic SSI risk index. Clin Infect Dis 2001;33(Suppl 2):S69S77.
72.Gaynes, RP, Solomon, S. Improving hospital-acquired infection rates: the CDC experience. Jt Comm J Qual Improv 1996;22:457467.
73.The Society for Hospital Epidemiology of America; The Association for Practitioners in Infection Control; The Centers for Disease Control; The Surgical Infection Society. Consensus paper on the surveillance of surgical wound infections. Infect Control Hosp Epidemiol 1992;13:599605.
74.Wong, ES, Rupp, ME, Mermel, L, et al.Public disclosure of healthcare-associated infections: the role of the Society for Healthcare Epidemiology of America. Infect Control Hosp Epidemiol 2005;26:210212.
75.McKibben, L, Horan, TC, Tokars, JI, et al.Guidance on public reporting of healthcare-associated infections: recommendations of the Healthcare Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol 2005;26:580587.
76. The Healthcare-Associated Infection Working Group of the Joint Public Policy Committee. Essentials of public reporting of healthcare-associated infections: a tool kit. January 2007. Available at: http://www.cdc.gov/ncidod/dhqp/pdf/ar/06_107498_Essentials_Tool_Kit.pdf. Accessed April 6, 2007.
77.The National Quality Forum. National voluntary consensus standards, endorsed November 15, 2007. Available at: http://www.qualityforum.org/pdf/news/lsCSACMeasures.pdf. Accessed December 20, 2007.

Strategies to Prevent Surgical Site Infections in Acute Care Hospitals

  • Deverick J. Anderson (a1), Keith S. Kaye (a1), David Classen (a2), Kathleen M. Arias (a3), Kelly Podgorny (a4), Helen Burstin (a5), David P. Calfee (a6), Susan E. Coffin (a7), Erik R. Dubberke (a8), Victoria Fraser (a8), Dale N. Gerding (a9) (a10), Frances A. Griffin (a11), Peter Gross (a12) (a13), Michael Klompas (a14), Evelyn Lo (a15), Jonas Marschall (a8), Leonard A. Mermel (a16), Lindsay Nicolle (a15), David A. Pegues (a17), Trish M. Perl (a18), Sanjay Saint (a19), Cassandra D. Salgado (a20), Robert A. Weinstein (a21), Robert Wise (a4) and Deborah S. Yokoe (a14)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed