Skip to main content Accessibility help
×
×
Home

Transfer from High-Acuity Long-Term Care Facilities Is Associated with Carriage of Klebsiella pneumoniae Carbapenemase–Producing Enterobacteriaceae: A Multihospital Study

  • Kavitha Prabaker (a1) (a2), Michael Y. Lin (a1), Margaret McNally (a3), Kartikeya Cherabuddi (a4), Sana Ahmed (a5), Andrea Norris (a5), Karen Lolans (a1), Ruba Odeh (a5), Vishnu Chundi (a6), Robert A. Weinstein (a1) (a2), Mary K. Hayden (a1) and Centers for Disease Control and Prevention (CDC) Prevention Epicenters Program...
Abstract
Objective.

To determine whether transfer from a long-term care facility (LTCF) is a risk factor for colonization with Klebsiella pneumoniae carbapenemase (KPC)–producing Enterobacteriaceae upon acute care hospital admission.

Design.

Microbiologic survey and nested case-control study.

Setting.

Four hospitals in a metropolitan area (Chicago) with an early KPC epidemic.

Patients.

Hospitalized adults.

Methods.

Patients transferred from LTCFs were matched 1 : 1 to patients admitted from the community by age (± 10 years), admitting clinical service, and admission date (± 2 weeks). Rectal swab specimens were collected within 3 days after admission and tested for KPC-producing Enterobacteriaceae. Demographic and clinical information was extracted from medical records.

Results.

One hundred eighty patients from LTCFs were matched to 180 community patients. KPC-producing Enterobacteriaceae colonization was detected in 15 (8.3%) of the LTCF patients and 0 (0%) of the community patients (P<.001). Prevalence of carriage differed by LTCF subtype: 2 of 135 (1.5%) patients from skilled nursing facilities without ventilator care (SNFs) were colonized upon admission, compared to 9 of 33 (27.3%) patients from skilled nursing facilities with ventilator care (VSNFs) and 4 of 12 (33.3%) patients from long-term acute care hospitals (LTACHs; P<.001). In a multivariable logistic regression model adjusted for a propensity score that predicted LTCF subtype, patients admitted from VSNFs or LTACHs had 7.0-fold greater odds of colonization (ie, odds ratio; 95% confidence interval, 1.3–42; P = .022) with KPC-producing Enterobacteriaceae than patients from an SNF.

Conclusions.

Patients admitted to acute care hospitals from high-acuity LTCFs (ie, VSNFs and LTACHs) were more likely to be colonized with KPC-producing Enterobacteriaceae than were patients admitted from the community. Identification of healthcare facilities with a high prevalence of colonized patients presents an opportunity for focused interventions that may aid regional control efforts.

Copyright
Corresponding author
600 South Paulina Street, Suite 143, Chicago, IL 60612 (kavitha_prabaker@rush.edu)
References
Hide All
1. Queenan, AM, Bush, K. Carbapenemases; the versatile β-lactamases. Clin Microbiol Rev 2007;20(3):440458.
2. Gasink, LB, Edelstein, PH, Lautenbach, E, Synnestvedt, M, Fishman, NO. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase–producing K. pneumoniae . Infect Control Hosp Epidemiol 2009;30(12):11801185.
3. Borer, A, Saidel-Odes, L, Riesenberg, K, et al. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol 2009;30(10):972976.
4. Schwaber, MJ, Klarfeld-Lidji, S, Navon-Venezia, S, Schwartz, D, Leavitt, A, Carmeli, Y. Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother 2008;52(3):10281033.
5. Yigit, H, Queenan, AM, Anderson, GJ, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae . Antimicrob Agents Chemother 2001;45(4):11511161.
6. Gupta, N, Limbago, BM, Patel, JB, Kallen, AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 2011;53(1):6067.
7. Perez, F, Endimiani, A, Ray, AJ, et al. Carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae across a hospital system: impact of post-acute care facilities on dissemination. J Antimicrob Chemother 2010;65(8):18071818.
8. Marquez, P, Terashita, D, Dassey, D, Mascola, L, Los Angeles County Department of Public Health. Community-wide laboratory surveillance of carbapenem-resistant Klebsiella pneumoniae (CRKP): Los Angeles County 2010. Paper presented at: 21st Annual Meeting of the Society for Healthcare Epidemiology of America; April 1–4, 2011; Dallas, TX. Abstract 359.
9. Centers for Disease Control and Prevention (CDC). Carbapenem-resistant Klebsiella pneumoniae associated with a long-term-care facility—West Virginia, 2009–2011. MMWR Morb Mortal Wkly Rep 2011;60(41):14181420.
10. Won, SY, Munoz-Price, LS, Lolans, K, et al. Emergence and rapid regional spread of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae . Clin Infect Dis 2011;53(6):532540.
11. Munoz-Price, LS. Long-term acute care hospitals. Clin Infect Dis 2009;49(3):438443.
12. Lin, MY, Lyles, RD, Lolans, K, et al. Prevalence of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae (KPC) among adult patients in intensive care units (ICUs) and long-term acute care hospitals (LTACHs) in the Chicago region. Paper presented at: 49th Annual Meeting of the Infectious Diseases Society of America; October 20–23, 2011; Boston, MA. Abstract 396.
13. Lolans, K, Calvert, K, Won, S, Clark, J, Hayden, MK. Direct ertapenem disk screening method for identification of KPC-producing Klebsiella pneumoniae and Escherichia coli in surveillance swab specimens. J Clin Microbiol 2010;48(3):836841.
14. Cole, JM, Schuetz, AN, Hill, CE, Nolte, FS. Development and evaluation of a real-time PCR assay for detection of Klebsiella pneumoniae carbapenemase genes. J Clin Microbiol 2009;47(2):322326.
15. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 1.3. http://www.eucast.org/clinical_breakpoints. Published 2011.
16. Matushek, MG, Bonten, MJ, Hayden, MK. Rapid preparation of bacterial DNA for pulsed-field gel electrophoresis. J Clin Microbiol 1996;34(10):25982600.
17. Tenover, FC, Arbeit, RD, Goering, RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33(9):22332239.
18. Bergstrom, N, Braden, BJ, Laguzza, A, Holman, V. The Braden Scale for predicting pressure sore risk. Nurs Res 1987;36(4):205210.
19. Brookhart, MA, Schneeweiss, S, Rothman, KJ, Glynn, RJ, Avorn, J, Sturmer, T. Variable selection for propensity score models. Am J Epidemiol 2006;163(12):11491156.
20. Bradley, SF, Terpenning, MS, Ramsey, MA, et al. Methicillin-resistant Staphylococcus aureus: colonization and infection in a long-term care facility. Ann Intern Med 1991;115(6):417422.
21. Gould, CV, Rothenberg, R, Steinberg, JP. Antibiotic resistance in long-term acute care hospitals: the perfect storm. Infect Control Hosp Epidemiol 2006;27(9):920925.
22. Elizaga, ML, Weinstein, RA, Hayden, MK. Patients in long-term care facilities: a reservoir for vancomycin-resistant enterococci. Clin Infect Dis 2002;34(4):441446.
23. Wiener, J, Quinn, JP, Bradford, PA, et al. Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. JAMA 1999;281(6):517523.
24. Calfee, D, Jenkins, SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect Control Hosp Epidemiol 2008;29(10):966968.
25. Kochar, S, Sheard, T, Sharma, R, et al. Success of an infection control program to reduce the spread of carbapenem-resistant Klebsiella pneumoniae . Infect Control Hosp Epidemiol 2009;30(5):447452.
26. Ben-David, D, Masarwa, S, Navon-Venezia, S, et al. Carbapenem-resistant Klebsiella pneumoniae in post-acute-care facilities in Israel. Infect Control Hosp Epidemiol 2011;32(9):845853.
27. Endimiani, A, Depasquale, JM, Forero, S, et al. Emergence of bla KPC-containing Klebsiella pneumoniae in a long-term acute care hospital: a new challenge to our healthcare system. J Antimicrob Chemother 2009;64(5):11021110.
28. Munoz-Price, LS, Hayden, MK, Lolans, K, et al. Successful control of an outbreak of Klebsiella pneumoniae carbapenemase–producing K. pneumoniae at a long-term acute care hospital. Infect Control Hosp Epidemiol 2010;31(4):341347.
29. Department of Health and Human Services, Centers for Medicare and Medicaid Services. State operations provider certification. CMS manual system publication 100–07. http://www.cms.gov/Regulations-and-Guidance/Guidance/Transmittals/downloads/R51SOMA.pdf. Published June 20, 2009. Updated 2009. Accessed June 25, 2012.
30. Mody, L, Langa, KM, Saint, S, Bradley, SF. Preventing infections in nursing homes: a survey of infection control practices in southeast Michigan. Am J Infect Control 2005;33(8):489492.
31. Roup, BJ, Roche, JC, Pass, M. Infection control program disparities between acute and long-term care facilities in Maryland. Am J Infect Control 2006;34(3):122127.
32. Roup, BJ, Scaletta, JM. How Maryland increased infection prevention and control activity in long-term care facilities, 2003–2008. Am J Infect Control 2011;39(4):292295.
33. Nelson, SR, Hayden, MK, Vernon, MO, Won, S, Heiman, K, Weinstein, RA. Increasing burden of carbapenem-resistant Enterobacteriaceae (CRE) in the Chicago metropolitan area: results of two surveys of infection preventionists. Paper presented at: 48th Annual Meeting of the Infectious Diseases Society of America; October 21–24, 2010; Vancouver, Canada. Abstract 360.
34. Ostrowsky, BE, Trick, WE, Sohn, AH, et al. Control of vancomycin-resistant enterococcus in health care facilities in a region. N Engl J Med 2001;344(19):14271433.
35. Schwaber, MJ, Lev, B, Israeli, A, et al. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis 2011;52(7):848855.
36. Vernon, MO, Hayden, MK, Trick, WE, et al. Chlorhexidine gluconate to cleanse patients in a medical intensive care unit: the effectiveness of source control to reduce the bioburden of vancomycin-resistant enterococci. Arch Intern Med 2006;166(3):306312.
37. Thurlow, CJ, Prabaker, K, Lin, MY, et al. Skin colonization with Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae (KPC) among long-term acute care hospital (LTACH) patients. Paper presented at: 49th Annual Meeting of the Infectious Diseases Society of America; October 20–23, 2011; Boston, MA. Abstract 1347.
38. Oostdijk, EA, de Smet, AM, Kesecioglu, J, Bonten, MJ, Dutch SOD-SDD Trialists Group. The role of intestinal colonization with gram-negative bacteria as a source for intensive care unit-acquired bacteremia. Crit Care Med 2011;39(5):961966.
39. Saidel-Odes, L, Polachek, H, Peled, N, et al. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol 2012;33(1):1419.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed