Skip to main content Accessibility help

Transmission of Clostridium difficile During Hospitalization for Allogeneic Stem Cell Transplant

  • Mini Kamboj (a1) (a2) (a3), Anna Sheahan (a1), Janet Sun (a1), Ying Taur (a2) (a3), Elizabeth Robilotti (a1) (a2) (a3), Esther Babady (a4), Genovefa Papanicolaou (a2) (a3), Ann Jakubowski (a3) (a5), Eric Pamer (a2) (a3) and Kent Sepkowitz (a1) (a2) (a3)...



To determine the role of unit-based transmission that accounts for cases of early Clostridium difficile infection (CDI) during hospitalization for allogeneic stem cell transplant.


Stem cell transplant unit at a tertiary care cancer center.


Serially collected stool from patients admitted for transplant was screened for toxigenic C. difficile through the hospital stay and genotyping was performed by multilocus sequence typing. In addition, isolates retrieved from cases of CDI that occurred in other patients hospitalized on the same unit were similarly characterized. Transmission links were established by time-space clustering of cases and carriers of shared toxigenic C. difficile strains.


During the 27-month period, 1,099 samples from 264 patients were screened, 69 of which had evidence of toxigenic C. difficile; 52 patients developed CDI and 17 were nonsymptomatic carriers. For the 52 cases, 41 had evidence of toxigenic C. difficile on the first study sample obtained within a week of admission, among which 22 were positive within the first 48 hours. A total of 24 sequence types were isolated from this group; 1 patient had infection with the NAP1 strain. A total of 11 patients had microbiologic evidence of acquisition; donor source could be established in half of these cases.


Most cases of CDI after stem cell transplant represent delayed onset disease in nonsymptomatic carriers. Transmission on stem cell transplant unit was confirmed in 19% of early CDI cases in our cohort with a probable donor source established in half of the cases.

Infect. Control Hosp. Epidemiol. 2015;37(1):8–15


Corresponding author

Address correspondence to Mini Kamboj, MD, 1275 York Ave, Box 9, New York, NY 10065 (


Hide All
1. Lessa, FC, Mu, Y, Bamberg, WM, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med 2015;372:825834.
2. Luo, R, Greenberg, A, Stone, CD. Outcomes of Clostridium difficile infection in hospitalized leukemia patients: a nationwide analysis. Infect Control Hosp Epidemiol 2015:18.
3. Alonso, CD, Kamboj, M. Clostridium difficile infection (CDI) in solid organ and hematopoietic stem cell transplant recipients. Curr Infect Dis Rep 2014;16:414.
4. Kamboj, M, Son, C, Cantu, S, et al. Hospital-onset Clostridium difficile infection rates in persons with cancer or hematopoietic stem cell transplant: a C3IC network report. Infect Control Hosp Epidemiol 2012;33:11621165.
5. Kamboj, M, Xiao, K, Kaltsas, A, et al. Clostridium difficile infection after allogeneic hematopoietic stem cell transplant: strain diversity and outcomes associated with NAP1/027. Biol Blood Marrow Transplant 2014;20:16261633.
6. Kinnebrew, MA, Lee, YJ, Jenq, RR, et al. Early Clostridium difficile infection during allogeneic hematopoietic stem cell transplantation. PLOS ONE 2014;9:e90158.
7. Alonso, CD, Treadway, SB, Hanna, DB, et al. Epidemiology and outcomes of Clostridium difficile infections in hematopoietic stem cell transplant recipients. Clin Infect Dis 2012;54:10531063.
8. Willems, L, Porcher, R, Lafaurie, M, et al. Clostridium difficile infection after allogeneic hematopoietic stem cell transplantation: incidence, risk factors, and outcome. Biol Blood Marrow Transplant 2012;18:12951301.
9. Trifilio, SM, Pi, J, Mehta, J. Changing epidemiology of Clostridium difficile-associated disease during stem cell transplantation. Biol Blood Marrow Transplant 2013;19:405409.
10. Lessa, FC, Gould, CV, McDonald, LC. Current status of Clostridium difficile infection epidemiology. Clin Infect Dis 2012;55:6570.
11. Huang, AM, Marini, BL, Frame, D, Aronoff, DM, Nagel, JL. Risk factors for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl Infect Dis 2014;16:744750.
12. Blot, E, Escande, MC, Besson, D, et al. Outbreak of Clostridium difficile-related diarrhoea in an adult oncology unit: risk factors and microbiological characteristics. J Hosp Infect 2003;53:187192.
13. Hu, C, Sunday, R, Bruminhent, J, et al. Investigation of a Clostridium difficile cluster by multilocus sequence typing in a bone marrow transplant unit. Am J Infect Control 2014;42:691693.
14. Walker, AS, Eyre, DW, Wyllie, DH, et al. Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. PLOS Med 2012;9:e1001172.
15. Taur, Y, Xavier, JB, Lipuma, L, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2012;55:905914.
16. Babady, NE, Stiles, J, Ruggiero, P, et al. Evaluation of the Cepheid Xpert Clostridium difficile Epi assay for diagnosis of Clostridium difficile infection and typing of the NAP1 strain at a cancer hospital. J Clin Microbiol 2010;48:45194524.
17. Griffiths, D, Fawley, W, Kachrimanidou, M, et al. Multilocus sequence typing of Clostridium difficile . J Clin Microbiol 2010;48:770778.
18. McDonald, LC, Coignard, B, Dubberke, E, et al. Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol 2007;28:140145.
19. Sethi, AK, Al-Nassir, WN, Nerandzic, MM, Bobulsky, GS, Donskey, CJ. Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C. difficile infection. Infect Control Hosp Epidemiol 2010;31:2127.
20. Curry, SR, Muto, CA, Schlackman, JL, et al. Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clin Infect Dis 2013;57:10941102.
21. Eyre, DW, Cule, ML, Wilson, DJ, et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med 2013;369:11951205.
22. Guerrero, DM, Nerandzic, MM, Jury, LA, Chang, S, Jump, RL, Donskey, CJ. Clostridium difficile infection in a Department of Veterans Affairs long-term care facility. Infect Control Hosp Epidemiol 2011;32:513515.
23. Han, A, Jump, RL. Discrepancies between surveillance definition and the clinical incidence of Clostridium difficile infection in a Veterans Affairs long-term care facility. Infect Control Hosp Epidemiol 2014;35:14351436.
24. Riggs, MM, Sethi, AK, Zabarsky, TF, Eckstein, EC, Jump, RL, Donskey, CJ. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin Infect Dis 2007;45:992998.
25. Black, SR, Weaver, KN, Jones, RC, et al. Clostridium difficile outbreak strain BI is highly endemic in Chicago area hospitals. Infect Control Hosp Epidemiol 2011;32:897902.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed