Skip to main content
×
×
Home

Transmission of resistant Gram-negative bacteria to healthcare personnel gowns and gloves during care of residents in community-based nursing facilities

  • Natalia Blanco (a1), J. Kristie Johnson (a2), John D. Sorkin (a3) (a4), Alison D. Lydecker (a1), Lauren Levy (a1), Lona Mody (a5) (a6) and Mary-Claire Roghmann (a1)...
Abstract
Objective

To estimate the risk of transmission of antibiotic-resistant Gram-negative bacteria (RGNB) to gowns and gloves worn by healthcare personnel (HCP) when providing care to residents of community-based nursing facilities to identify the types of care and resident characteristics associated with transmission.

Design

Prospective observational study.

Settings and participants

Residents and HCP from 13 community-based nursing facilities in Maryland and Michigan.

Methods

Perianal swabs were collected from residents and cultured to detect RGNB. HCP wore gowns and gloves during usual care activities, and at the end of each interaction, these were swabbed in a standardized manner. Transmission of RGNB from a colonized resident to gowns and gloves was estimated. Odds ratios (ORs) of transmission associated with type of care or resident characteristic were calculated.

Results

We enrolled 403 residents and their HCP in this study. Overall, 19% of enrolled residents with a perianal swab (n=399) were colonized with at least 1 RGNB. RGNB transmission to either gloves or gowns occurred during 11% of the 584 interactions. Showering the resident, hygiene or toilet assistance, and wound dressing changes were associated with a high risk of transmission. Glucose monitoring and assistance with feeding or medication were associated with a low risk of transmission. Residents with a pressure ulcer were 3 times more likely to transmit RGNB than residents without one (OR, 3.3; 95% confidence interval [CI], 1.0–11.1).

Conclusions

Gown and glove use in community nursing facilities should be prioritized for certain residents and care interactions that are deemed a high risk for transmission.

Copyright
Corresponding author
Author for correspondence: Mary-Claire Roghmann, MD, MS, University of Maryland School of Medicine, 10 South Pine Street, MTSF Room 336, Baltimore, MD 21201. E-mail: Mroghmann@som.umaryland.edu
Footnotes
Hide All

Cite this article: Blanco N, et al. (2018). Transmission of resistant gram-negative bacteria to healthcare personnel gowns and gloves during care of residents in community-based nursing facilities. Infection Control & Hospital Epidemiology 2018, 39, 1425–1430. doi: 10.1017/ice.2018.247

Footnotes
References
Hide All
1. Mody, L, Foxman, B, Bradley, S, et al. Longitudinal assessment of multidrug-resistant organisms in newly admitted nursing facility patients: implications for an evolving population. Clin Infect Dis. 2018;67:837844.
2. Cassone, M, Mody, L. Colonization with multi-drug resistant organisms in nursing homes: scope, importance, and management. Curr Geriatr Rep. 2015;4:8795.
3. Aliyu, S, Smaldone, A, Larson, E. Prevalence of multidrug-resistant gram-negative bacteria among nursing home residents: a systematic review and meta-analysis. Am J Infect Control 2017;45:512518.
4. Harris, AD, Perencevich, EN, Johnson, JK, et al. Patient-to-patient transmission is important in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae acquisition. Clin Infect Dis 2007;45:13471350.
5. Johnson, JK, Smith, G, Lee, MS, et al. The role of patient-to-patient transmission in the acquisition of imipenem-resistant pseudomonas aeruginosa colonization in the intensive care unit. J Infect Dis 2009;200:900905.
6. Harris, AD, Kotetishvili, M, Shurland, S, et al. How important is patient-to-patient transmission in extended-spectrum beta-lactamase Escherichia coli acquisition. Am J Infect Control 2007;35:97101.
7. Smith, PW, Bennett, G, Bradley, S, et al. SHEA/APIC guideline: infection prevention and control in the long-term care facility, July 2008. Infect Control Hosp Epidemiol 2008;29:785814.
8. Siegel, JD, Rhinehart, E, Jackson, M, Chiarello, L, Health Care Infection Control Practices Advisory Committee. 2007 guideline for isolation precautions: preventing transmission of infectious agents in health care settings. Am J Infect Control 2007;35:S65S164.
9. Roghmann, MC, Johnson, JK, Sorkin, JD, et al. Transmission of methicillin-resistant Staphylococcus aureus (MRSA) to healthcare personnel gowns and gloves during care of nursing home residents. Infect Control Hosp Epidemiol 2015;36:10501057.
10. Blanco, N, Pineles, L, Lydecker, AD, et al. Transmission of resistant gram-negative bacteria to health care worker gowns and gloves during care of nursing home residents in Veterans Affairs community living centers. Antimicrob Agents Chemother 2017;61(10):10.1128/AAC.00790-17.
11. Mody, L, Greene, MT, Saint, S, et al. Comparing catheter-associated urinary tract infection prevention programs between veterans affairs nursing homes and non-veterans affairs nursing homes. Infect Control Hosp Epidemiol 2017;38:287293.
12. ADL Data Systems. ADL scoring sheet. Activities of Daily Living Data website. https://www.adldata.org/wp-content/uploads/2015/06/ADL_Scoring_Cheat_Sheet.pdf. Accessed May 22, 2018.
13. Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 16th Informational Supplement (M100-S16). Wayne, PA: CLSI; 2006.
14. Liang, K, Zeger, SL. Longitudinal data analysis using generalized linear models. Biometrika 1986;73:1322.
15. Donskey, CJ. Antibiotic regimens and intestinal colonization with antibiotic-resistant gram-negative bacilli. Clin Infect Dis 2006;43:S62S69.
16. Braga, IA, Brito, CS, Filho, AD, Filho, PP, Ribas, RM. Pressure ulcer as a reservoir of multiresistant gram-negative bacilli: risk factors for colonization and development of bacteremia. Braz J Infect Dis 2017;21:171175.
17. Flattau, A, Schiffman, J, Lowy, FD, Brem, H. Antibiotic-resistant gram-negative bacteria in deep tissue cultures. Int Wound J 2008;5:599600.
18. Tseng, W, Chen, Y, Yang, B, et al. Predicting multidrug-resistant gram-negative bacterial colonization and associated infection on hospital admission. Infect Control Hosp Epidemiol 2017;38:12161225.
19. Pineles, L, Morgan, DJ, Lydecker, A, et al. Transmission of MRSA to healthcare worker gowns and gloves during care of nursing home residents in VA community living centers. AJIC 2017;pii:S0196-6553(17):30200-30206.
20. Lemmen, SW, Hafner, H, Zolldann, D, Stanzel, S, Lutticken, R. Distribution of multi-resistant gram-negative versus gram-positive bacteria in the hospital inanimate environment. J Hosp Infect 2004;56:191197.
21. Morgan, DJ, Rogawski, E, Thom, KA, et al. Transfer of multidrug-resistant bacteria to healthcare workers’ gloves and gowns after patient contact increases with environmental contamination. Crit Care Med 2012;40:10451051.
22. Filius, PM, Gyssens, IC, Kershof, IM, et al. Colonization and resistance dynamics of gram-negative bacteria in patients during and after hospitalization. Antimicrob Agents Chemother 2005;49:28792886.
23. Weintrob, AC, Roediger, MP, Barber, M, et al. Natural history of colonization with gram-negative multidrug-resistant organisms among hospitalized patients. Infect Control Hosp Epidemiol 2010;31:330337.
24. Thurlow, CJ, Prabaker, K, Lin, MY, et al. Anatomic sites of patient colonization and environmental contamination with Klebsiella pneumoniae carbapenemase-producing enterobacteriaceae at long-term acute-care hospitals. Infect Control Hosp Epidemiol 2013;34:5661.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed