Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-13T14:42:07.307Z Has data issue: false hasContentIssue false

Comparison of Different Methods for Determining Atmospheric Parameters of A and F Stars

Published online by Cambridge University Press:  12 April 2016

B. Smalley
Affiliation:
Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
M.M. Dworetsky
Affiliation:
Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The atmospheric parameters of metallic-lined (Am) stars have been the subject of much debate. Using spectrophotometric flux fitting, Lane & Lester (1984) obtained values of Teff and log g for several classical Am stars that were systematically lower than those obtained by Dworetsky & Moon (1986), who used empirically calibrated uvbyß photometry. We have used the standard procedures of photometry, spectrophotometry and hydrogen-line profile fitting to determine the atmospheric parameters of many A and F stars, including several Am stars. Modifications to the standard techniques have been used to allow for the effects of cooler companion stars in the determination of such parameters. It is found that spectrophotometric methods give results for Teff and log g that are highly sensitive to the adopted metal abundance. This explains the anomalous results of Lane & Lester.

Type
I. General Properties of CP Stars
Copyright
Copyright © Astronomical Society of the Pacific 1993

References

Berrington, K.A., Burke, P.G., Butler, K., Seaton, M.J., Storey, P.J. & Taylor, K.T., 1987. J. Phys. B: At. Mol. Phys., 20, 6379.Google Scholar
Berthet, S., 1990. Astr. Astrophys., 236, 440.Google Scholar
Blackwell, D.E. & Shallis, M.J., 1977. Mon. Not. R. astr. Soc, 180, 177.Google Scholar
Blackwell, D.E., Petford, A.D. & Shallis, M.J., 1980. Astr. Astrophys., 82, 249.Google Scholar
Cayrel, R., Burkhart, C. & Van’t Veer, C., 1991. In: Evolution of Stars: The Photospheric Abundance Connection, IAU Symp. No. 145, eds. Michaud, G. & Tutukov, A., p. 99, Kluwer, Dordrecht, Holland.Google Scholar
Crawford, D.L., 1975. Astr. J., 80, 955.Google Scholar
Dworetsky, M.M. & Moon, T.T., 1986. Mon. Not. R. astr. Soc., 220, 787.Google Scholar
Hundt, E., 1972. Astr. Astrophys., 21, 413.Google Scholar
Kurucz, R.L., 1979. Astrophys. J. Suppl., 40, 1.CrossRefGoogle Scholar
Kurucz, R.L., 1988. Private communication.Google Scholar
Kurucz, R.L. & Peytremann, E., 1975. Smithsonian Ap. Obs. Spec. Rept., 362.Google Scholar
Lane, M.C. & Lester, J.B., 1984. Astrophys. J., 281, 723.Google Scholar
Lane, M.C. & Lester, J.B., 1987. Astrophys. J. Suppl., 65, 137.Google Scholar
Lester, J.B., 1987. Mon. Not. R. astr. Soc., 227, 135.Google Scholar
Maeder, A. & Meynet, G., 1988. Astr. Astrophys. Suppl., 76, 411.Google Scholar
Mégessier, C. & Van’t Veer, C., 1991. In: Evolution of Stars: The Photospheric Abundance Connection, Posters presented at IAU Symposium 145 eds. Michaud, G., Tutukov, A. & Bergevin, M., p. 35, University of Montreal.Google Scholar
Moon, T.T. & Dworetsky, M.M., 1985. Mon. Not. R. astr. Soc., 217, 305.Google Scholar
Seaton, M.J., 1987. J. Phys. B: At. Mol. Phys., 20, 6363.Google Scholar
Smalley, B. PhD thesis, University of London, 1992.Google Scholar
Smalley, B. & Dworetsky, M.M., 1991. In: Evolution of Stars: The Photospheric Abundance Connection, Posters presented at IAU Symposium 145 eds. Michaud, G., Tutukov, A. & Bergevin, M., p. 47, University of Montreal.Google Scholar
Smith, R.C., 1983. Observatory, 103, 29.Google Scholar
Van’t Veer, C., Cayrel, R. & Coupry, M.F., 1991. In: Evolution of Stars: The Photospheric Abundance Connection, Posters presented at IAU Symposium 145 eds. Michaud, G., Tutukov, A. & Bergevin, M., p. 49, University of Montreal.Google Scholar