Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-21T15:41:20.441Z Has data issue: false hasContentIssue false

Enrichment of s-Process Elements in the Progenitor of SN 1987A

Published online by Cambridge University Press:  12 April 2016

R.E. Williams*
Affiliation:
Cerro Tololo Inter-American Observatory National Optical Astronomy Observatories Casilla 603, La Serena, CHILE

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Existing calculations of s-process nucleosynthesis in massive stars such as Sk −69° 202 show enhancements in the He-burning shells which, when mixed to the surface, lead to Sc, Sr, and Ba enrichments of factors of 2 to 15. Abundances derived from the supernova absorption lines using a simple scattering model yield enhancements of this magnitude. Thus, the observed and predicted s-process abundances are roughly in accord, although the Ba/Sr ratio derived for the supernova may be higher than the s-process can account for.

Type
Part III. Chemical and Dynamical Structures of Exploding Stars
Copyright
Copyright © Springer-Verlag 1988

References

Blanco, V.M., et al., 1987, Ap. J., 320, 589.CrossRefGoogle Scholar
Cameron, A.G.W. 1982, in Essays in Nuclear Astrophysics, ed. Barnes, C., Clayton, D., and Schramm, D. (Cambridge Univ. Press: Cambridge), p. 23.Google Scholar
Clayton, D.D. 1968, Principles of Stellar Evolution and Nucleosynthesis (McGraw-Hill: New York).Google Scholar
Danziger, I.J., et al. 1987, Astr. Ap., 177, L13.Google Scholar
Dufour, R.J. 1981, in IAU Symp. No. 108: Structure and Evolution of the Magellanic Clouds, ed. van den Bergh, S. and de Boer, K. (Dordrecht: Reidel), p. 353.Google Scholar
Fuhr, J.R., Martin, G.A., Wiese, W.L., and Younger, S.M. 1981, J. Phys. Chem. Ref. Data, 10, 305.Google Scholar
Hamuy, M., Suntzeff, N.B., Gregory, B.A., and Elias, J.H. 1987, A. J., in press.Google Scholar
Lamb, S.A., Howard, W.M., Truran, J.W., and Iben, I. 1977, Ap J., 217, 213.Google Scholar
Lindgard, A., and Nielsen, S.E. 1977, Atomic Data and Nuclear Data Tables, 19, 533.CrossRefGoogle Scholar
Menzies, J.W., et al. 1987, M.N.R.A.S., 227, 39P.Google Scholar
Mínalas, D. 1969, Stellar Atmospheres (W.H. Freeman: San Francisco), ch. 11.Google Scholar
Phillips, M.M. 1979, Ap. J. Suppl., 39, 377.Google Scholar
Prantzos, N., Arnould, M., and Arcoragi, J.-P. 1987, Ap. J., 315, 209.CrossRefGoogle Scholar
Reader, J., Corliss, C.H., Wiese, W.L., and Martin, G.A. 1980, Wavelengths and Transition Probabilities for Atoms and Atomic Ions, NBS Publ. 68.Google Scholar
van Genderen, A.M., van Driel, W., and Greidanus, H. 1986, Astr. Ap., 155, 72.Google Scholar
Wiese, W.L., Smith, M.W., and Glennon, B.M. 1966, Atomic Transition Probabilities, NSRDS-NBS 4.Google Scholar
Williams, R.E. 1987, Ap. J. (Letters), 320, L117.Google Scholar
Woosley, S.E., Pinto, P.A., Martin, P.G., and Weaver, T.A. 1987, Ap. J., 318, 664.CrossRefGoogle Scholar