Hostname: page-component-7d684dbfc8-26pbs Total loading time: 0 Render date: 2023-09-23T06:41:36.796Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

The Ephemerides of the Inner Planets from Spacecraft Range Data and Radar Observations 1961–1995

Published online by Cambridge University Press:  12 April 2016

E. V. Pitjeva*
Institute of Applied Astronomy, Russian Academy of Sciences St. Petersburg, Russia


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A numerical theory of motion of the inner planets and Jupiter is presented. The numerical ephemerides were compared with the set of American and Russian radar observations of planets, obtained during 1961–1995 (nearly 60000 observations), together with range measurements of Martian landers Viking-1,-2 and Mariner-9 tracking data.

The main fitted parameters were the elements of Mercury, Venus, Earth, Mars, the Astronomical Unit, the scale corrections to the reference surface of planets and variability of the gravitational constant. The parameters of Mars rotation, coordinates of Viking landers, elements and the mass of Jupiter, the masses of the three asteroids were evaluated from Viking landers observations.

Solar System Dynamics
Copyright © Kluwer 1997


Aleshkina, E.Yu., Krasinsky, G.A., and Vasilyev, M.V.: 1996, “Analysis of LLR data by the program system ERA”, this volume.Google Scholar
Anderson, J.D., Campbell, J.K., Jurgens, R.F., Lau, E.L., Newhall, XX, Slade, M.A. III, and Standish, E.M. Jr.,: 1992, “Recent developments in Solar system tests of general relativity”, Proceedings of the Sixth Marcel Grossmann Meeting on General Relativity (Sato, H., Nakamura, T., eds), World Scientific, London, p.353. Google Scholar
Campbell, J.K. and Synnott, S.P.: 1985, “Gravity field of the Jovian system from Pioneer and Voyager tracking data”, Astron. J. 90, 364372.CrossRefGoogle Scholar
Canuto, V.M., Hsieh, S.-H., and Owen, J.R.: 1979, “Varying G”, Mon. Not. R. Astron. Soc. 188, 829837.CrossRefGoogle Scholar
Everhart, F.: 1974, “Implicit single-sequence methods for integration of orbits”, Ce-lest. Mech. 10, 3536.CrossRefGoogle Scholar
Krasinsky, G.A., Aleshkina, E.Yu., Pitjeva, E.V., and Sveshnikov, M.L.: 1986, “Relati-vistic effects from planetary and lunar observations of the XVIII-XX centuries”, in: Relativity in Celestial Mechanics and Astrometry, IAU Symp. 114 (Kovalevsky, J., Brumberg, V.A., eds), Reidel, Dordrecht, 315328.CrossRefGoogle Scholar
Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., and Chunajeva, L.I.: 1993, “The motion of major planets from observations 1769-1988 and some astronomical constants”, Celest. Mech. 55, 123.CrossRefGoogle Scholar
Krasinsky, G.A. and Vasilyev, M.V.: 1996, “Universal programming system ERA for high precision applications of dynamic and ephemeris astronomy”, this volume.Google Scholar
Pitjeva, E.V.: 1996, “Using spacecraft range data and radar observations for the improvement of the orbital elements of planets and parameters of Mars rotation”, in: Dynamics, Ephemerides and Astrometry of the Solar System, IAU Symposium 172 (Ferraz-Mello, S., Morando, B., Arlot, J.E., eds), Kluwer, Dordrecht, 4548.Google Scholar
Standish, E.M. Jr.: 1994, private communication.Google Scholar
Standish, E.M., Newhall, XX, Williams, J.G., and Folkner, W.M.: 1995, “JPL planetary and lunar ephemerides, DE403/LE403”, JPL IOM 314.10-127, 122.Google Scholar
Zaitsev, A.L.: 1995, private communication.Google Scholar