Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-04T06:01:14.841Z Has data issue: false hasContentIssue false

Magnetized Accretion Disks and the Origin of Bipolar Outflows

Published online by Cambridge University Press:  12 April 2016

Arieh Königl*
Affiliation:
Department of Astronomy & Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Centrifugally driven winds from the surfaces of magnetized accretion disks are an attractive mechanism for removing the angular momentum of the accreted matter and of producing bipolar outflows and jets in compact astronomical objects. In this contribution, I first review steady–state disk–wind models that have been constructed for the different density regimes of circumstellar disks and comment on their expected stability. I then consider several nonsteady effects, including disk formation in molecular cloud-core collapse, magnetic flux transport through the disk, and the role of magnetic fields in the FU Orionis outburst phenomenon. I conclude with a discussion of some of the unique observational properties of disk-driven outflows in young stellar objects and in active galactic nuclei. These characteristics are a consequence of the highly stratified density and velocity structures of centrifugally driven outflows, their large momentum discharges (which result in the efficient uplifting of dust from the disk), and, in the case of molecular disks around lowluminosity objects, their comparatively low initial degrees of ionization (which can lead to rapid heating by ambipolar diffusion).

Type
Part 12. Outflows from YSO and AGN
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Bell, K.R., & Lin, D.N.C. 1994, ApJ, 427, 987 CrossRefGoogle Scholar
Blandford, R.D. 1993, in Astrophysical Jets, ed. Livio, M., O’Dea, C., & Burgarella, D. (Cambridge: Cambridge Univ. Press), 15 Google Scholar
Blandford, R.D., & Payne, D.G. 1982, MNRAS, 199, 883 CrossRefGoogle Scholar
Cao, X., & Spruit, H.C. 1994, A & A, 287, 80 Google Scholar
Calvet, N., Hartmann, L., & Kenyon, S.J. 1993, ApJ, 402, 623 CrossRefGoogle Scholar
Ciolek, G.E., & Mouschovias, T.Ch. 1995, ApJ, 454, 194 CrossRefGoogle Scholar
Contopoulos, J. 1995, ApJ, 450, 616 CrossRefGoogle Scholar
Contopoulos, J., & Königl, A. 1996, in preparationGoogle Scholar
Ferreira, J., & Pelletier, G. 1995, A & A, 295, 807 Google Scholar
Gammie, C.F. 1996, ApJ, 457, 355 CrossRefGoogle Scholar
Kartje, J.F. 1995, ApJ, 452, 565 CrossRefGoogle Scholar
Königl, A. 1994, in Theory of Accretion Disks – 2, ed. Duschl, W.J. et al. (Dordrecht: Kluwer), 53 Google Scholar
Königl, A. 1995, RMxAA (Conf. Ser.), 1, 275 Google Scholar
Königl, A., & Kartje, J.F. 1994, ApJ, 434, 446 CrossRefGoogle Scholar
Königl, A., & Ruden, S.P. 1993, in Protostars and Planets III, ed. Levy, E.H. & Lunine, J.I. (Tucson: University of Arizona Press), 641 Google Scholar
Königl, A., & Wardle, M. 1996, MNRAS, 279, L61 CrossRefGoogle Scholar
Li, Z.-Y. 1995, ApJ, 444, 848 CrossRefGoogle Scholar
Li, Z.-Y. 1996, ApJ, 465, 855 CrossRefGoogle Scholar
Li, Z.-Y., & Shu, F.H. 1996, ApJ, in pressGoogle Scholar
Lovelace, R.V.E., Berk, H.L., & Contopoulos, J. 1991, ApJ, 379, 696 CrossRefGoogle Scholar
Lovelace, R.V.E., Romanova, M.M., & Newman, W.I. 1994, ApJ, 437, 136 CrossRefGoogle Scholar
Lubow, S.H., Papaloizou, J.C.B., & Pringle, J. 1994, MNRAS, 267, 235 CrossRefGoogle Scholar
Martin, S.C. 1996, ApJ, in pressGoogle Scholar
Reyes-Ruiz, M., & Stepinski, T.F. 1996, ApJ, 459, 653 CrossRefGoogle Scholar
Safier, P.N. 1993a, ApJ, 408, 115 CrossRefGoogle Scholar
Safier, P.N. 1993b, ApJ, 408, 148 CrossRefGoogle Scholar
Shu, F.H., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., & Lizano, S. 1994, ApJ, 429, 781 CrossRefGoogle Scholar
Stone, J.M., Hawley, J.F., Gammie, C.F., & Balbus, S.A. 1996, ApJ, 463, 656 CrossRefGoogle Scholar
Wardle, M., & Königl, A. 1993, ApJ, 410, 218 CrossRefGoogle Scholar