Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T16:36:21.056Z Has data issue: false hasContentIssue false

Nucleosynthesis in Black-Hole-Forming Supernovae

Published online by Cambridge University Press:  19 September 2016

K. Nomoto
Affiliation:
Department of Astronomy & Research Center for the Early Universe, University of Tokyo, Tokyo, Japan;nomoto@astron.s.u-tokyo.ac.jp
K. Maeda
Affiliation:
Department of Astronomy & Research Center for the Early Universe, University of Tokyo, Tokyo, Japan;nomoto@astron.s.u-tokyo.ac.jp
H. Umeda
Affiliation:
Department of Astronomy & Research Center for the Early Universe, University of Tokyo, Tokyo, Japan;nomoto@astron.s.u-tokyo.ac.jp
N. Tominaga
Affiliation:
Department of Astronomy & Research Center for the Early Universe, University of Tokyo, Tokyo, Japan;nomoto@astron.s.u-tokyo.ac.jp
T. Ohkubo
Affiliation:
Department of Astronomy & Research Center for the Early Universe, University of Tokyo, Tokyo, Japan;nomoto@astron.s.u-tokyo.ac.jp
J. Deng
Affiliation:
Department of Astronomy & Research Center for the Early Universe, University of Tokyo, Tokyo, Japan;nomoto@astron.s.u-tokyo.ac.jp
P.A. Mazzali
Affiliation:
Department of Astronomy & Research Center for the Early Universe, University of Tokyo, Tokyo, Japan;nomoto@astron.s.u-tokyo.ac.jp Osservatorio Astronomico, Via Tiepolo, 11, 34131 Trieste, Italy

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars more massive than ~ 20 − 25 M form a black hole at the end of their evolution. Stars with non-rotating black holes are likely to collapse “quietly” ejecting a small amount of heavy elements (faint supernovae). In contrast, stars with rotating black holes are likely to give rise to very energetic supernovae (hypernovae). We present distinct nucleosynthesis features of these two types of “black-hole-forming” supernovae. Nucleosynthesis in hypernovae is characterized by larger abundance ratios (Zn, Co, V, Ti)/Fe and smaller (Mn, Cr)/Fe than normal supernovae, which can explain the observed trend of these ratios in extremely metal-poor stars. Nucleosynthesis in faint supernovae is characterized by a large amount of fall-back. We show that the abundance pattern of the recently discovered most Fe-poor star, HE0107-5240, and other extremely metal-poor carbon-rich stars are in good accord with those of black-hole-forming supernovae, but not pair-instability supernovae. This suggests that black-hole-forming supernovae made important contributions to the early Galactic (and cosmic) chemical evolution. Finally we discuss the nature of first (Pop III) Stars.

Type
Part IV Supernovae: Models
Copyright
Copyright © Springer-Verlag 2005

References

1. Abel, T., Bryan, G.L., Norman, M.L.: Science 295, 93 (2002)CrossRefGoogle Scholar
2. Aoki, W., Ryan, S.G., Beers, T.C., Ando, H.: Astrophys. J. 567, 1166 (2002)Google Scholar
3. Audouze, J., Silk, J.: Astrophys. J. Lett. 451 L49 (1995)CrossRefGoogle Scholar
4. Blake, L.A.J., Ryan, S.G., Nords, J.E., Beers, T.C.: Nue. Phys. 688, 502 (2001)Google Scholar
5. Boothroyd, A.I., Sackmann, I.-J.: Astrophys. J. 510, 217 (1999)CrossRefGoogle Scholar
6. Christlieb, N. et al.: Nature 419, 904 (2002)CrossRefGoogle Scholar
7. Depagne, E. et al.: Astron. Astrophys. 390, 187 (2002)Google Scholar
8. Hachisu, I., Matsuda, T., Nomoto, K., Shigeyama, T.: Astrophys. J. Lett. 358 L57 (1990)Google Scholar
9. Hashimoto, M., Nomoto, K., Shigeyama, T.: Astron. Astrophys. 210 L5 (1989)Google Scholar
10. Heger, A., Woosley, S.E.. Astrophys. J. 567, 532 (2002)Google Scholar
11. Kifonidis, K., Plewa, T., Janka, H.-Th., Muller, E.: Astrophys. J. Lett. 531 L123 (2000)CrossRefGoogle Scholar
12. Maeda, K., Nakamura, T., Nomoto, K., Mazzali, P.A., Patat, F., Hachisu, I.: Astrophys. J. 565, 405 (2002)Google Scholar
13. Maeda, K., Nomoto, K.: Nue. Phys. A718 167 (2003)Google Scholar
14. Maeda, K., Nomoto, K.: Astrophys. J. 598, 1163 (2003)Google Scholar
15. Maeda, K., Mazzali, P.A., Deng, J., Nomoto, K., Yoshii, Y., Tomita, H., Kobayashi, Y.: Astrophys. J. 593 931(2003)CrossRefGoogle Scholar
16. Mazzali, P.A., Nomoto, K., Deng, J., Maeda, K., Iwamoto, K., Filippenko, A.V., Foley, R.T.: In: these ProceedingsGoogle Scholar
17. McWilliam, A., Preston, G.W., Sneden, C., Searle, L.: Astron. J. 109, 2757 (1995)CrossRefGoogle Scholar
18. Nakamura, T., Umeda, H., Nomoto, K., Thielemann, F.-K., Burrows, A.: Astrophys. J. 517, 193 (1999)Google Scholar
19. Nakamura, T., Umeda, H., Iwamoto, K., Nomoto, K., Hashimoto, M., Hix, R.W., Thielemann, F.-K.: Astrophys. J. 555, 880 (2001)Google Scholar
20. Nomoto, K. et al.: In: Supernovae and Gamma Ray Bursts, eds. Livio, M. et al. (Cambridge Univ. Press: Cambridge, 2001) p. 144 Google Scholar
21. Nomoto, K., Maeda, K., Umeda, H., Nakamura, T.: In: The Influence of Binaries on Stellar Populations Studies, ed. Vanbeveren, D. (Kluwer: Dordrecht, 2001) p. 507 Google Scholar
22. Nomoto, K., Maeda, K., Umeda, H., Ohkubo, T., Deng, J., Mazzali, P.A.: In: IAU Symp 212, A Massive Star Odyssey, from Main Sequence to Supernova, eds. Hucht, V.D., Herrero, A., Esteban, C. (ASP: San Francisco, 2003) p. 395 Google Scholar
23. Nomoto, K., Maeda, K., Mazzali, P.A., Umeda, H., Deng, J., Iwamoto, K.: astro-ph 0308136 (2003)Google Scholar
24. Norris, J.E., Ryan, S.G., Beers, T.C.: Astrophys. J. 561, 1034 (2001)Google Scholar
25. Ohkubo, T., Umeda, H., Nomoto, K.: Nuc. Phys. A718 632 (2003)CrossRefGoogle Scholar
26. Primas, F. et al.: In: The First Stars, eds. Weiss, A., et al. (Springer: Berlin, 2000) p. 51 CrossRefGoogle Scholar
27. Ryan, S.G., Norris, J.E., Beers, T.C.: Astrophys. J. 471, 254 (1996)Google Scholar
28. Ryan, S.G.: astro-ph 0211608 2002)Google Scholar
29. Schneider, R., Ferrara, A., Natarajan, P., Omukai, K.: Astrophys. J. 571, 30 (2002)CrossRefGoogle Scholar
30. Shigeyama, T., Tsujimoto, T.: Astrophys. J. Lett. 507 L135 (1998)CrossRefGoogle Scholar
31. C.Sneden, , Gratton, R.G., Crocker, D.A.: Astron. Astrophys. 246, 354 (1991)Google Scholar
32. Thielemann, F.-K., Nomoto, K., Hashimoto, M.: Astrophys. J. 460, 408 (1996)Google Scholar
33. Umeda, H., Nomoto, K.: Astrophys. J. 565, 385 (2002)CrossRefGoogle Scholar
34. Umeda, H., Nomoto, K., Tsuru, T., Matsumoto, H.: Astrophys. J. 578, 855 (2002)Google Scholar
35. Umeda, H., Nomoto, K.: Nature 422, 871 (2003)Google Scholar
36. Umeda, H., Nomoto, K.: astro-ph 0308029 (2003)Google Scholar
37. Yoshii, Y.: Astron. Astrophys. 97, 280 (1981)Google Scholar