Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T11:13:38.633Z Has data issue: false hasContentIssue false

On the Stability of Thermonuclear Burning Fronts in Type Ia Supernovae

Published online by Cambridge University Press:  19 September 2016

F.K. Röpke
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany;fritz@mpa-garching.mpg.de, wfh@mpa-garching.mpg.de
W. Hillebrandt
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany;fritz@mpa-garching.mpg.de, wfh@mpa-garching.mpg.de

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The propagation of cellularly stabilized thermonuclear flames is investigated by means of numerical simulations. In Type Ia supernova explosions the corresponding burning regime establishes at scales below the Gibson length. The cellular flame stabilization - which is a result of an interplay between the Landau-Darrieus instability and a nonlinear stabilization mechanism - is studied for the case of propagation into quiescent fuel as well as interaction with vortical fuel flows. Our simulations indicate that in thermonuclear supernova explosions stable cellular flames develop around the Gibson scale and that a deflagration-to-detonation transition is unlikely to be triggered from flame evolution effects here.

Type
Part IV Supernovae: Models
Copyright
Copyright © Springer-Verlag 2005

References

1. Blinnikov, S.I., Sasorov, P.V.: Phys. Rev. E 53, 4827 (1996)Google Scholar
2. Darrieus, G.: In: “Propagation d’un front de flame.” Presented at: La Technique Moderne, unpublished (1938)Google Scholar
3. Gamezo, V.N., Khokhlov, A.M., Oran, E.S., Chtchelkanova, A.Y., Rosenberg, R.O.: Science 299, 77 (2003)Google Scholar
4. Gutman, S., Sivashinsky, G.I.: Physica D 43, 129 (1990)Google Scholar
5. Helenbrook, B.T., Law, O.K.: Combustion and Flame 117, 155 (1999)Google Scholar
6. Hillebrandt, W., Niemeyer, J.C.: Ann. Rev. Astron. Astrophys. 38, 191 (2000)Google Scholar
7. Hoyle, F., Fowler, W.A.: Astrophys. J. 132, 565 (1960)CrossRefGoogle Scholar
8. Kerstein, A.R.: Combust. Sci. Technol. 118, 189 (1996)Google Scholar
9. Landau, L.D.: Acta Physicochim URSS 19, 77 (1944)Google Scholar
10. Niemeyer, J.C., Hillebrandt, W.: Astrophys. J. 452, 779 (1995)CrossRefGoogle Scholar
11. Niemeyer, J.C., Woosley, S.E.: Astrophys. J. 475, 740 (1997)Google Scholar
12. Reinecke, M., Hillebrandt, W., Niemeyer, J.C.: Astron. Astrophys. 391, 1167 (2002)Google Scholar
13. Röpke, F.K., Niemeyer, J.C., Hillebrandt, W.: Astrophys. J. 588, 952 (2003)Google Scholar
14. Röpke, F.K., Hillebrandt, W., Niemeyer, J.C.: In: “The Cellular Burning Regime in Type Ia Supernova explosions: Flame, I. Propagation into Quiescent Fuel.” Astron. Astrophys., inpress (2004)Google Scholar
15. Röpke, F.K., Hillebrandt, W., Niemeyer, J.C.: In: “The Cellular Burning Regime in Type la Supernova explosions: IFlame, I. Propagation into Vortical Fuel.” Astron. Astrophys., inpress (2004)Google Scholar
16. Röpke, F.K.: In: “On the Stability of Thermonuclear Flames in Type Ia Supernova Explosions.” Ph.D. Thesis (Technical University of Munich: 2003)Google Scholar
17. Zel’dovich, Ya.B.: Appi, J.. Mech. and Tech. Phys. 1, 68 (1966)Google Scholar