Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-17T13:27:35.668Z Has data issue: false hasContentIssue false

Structure of the Diffuse Interstellar Medium

Published online by Cambridge University Press:  12 April 2016

Donald P. Cox*
Affiliation:
Department of Physics, University of Wisconsin-Madison1150 University Ave., Madison, WI, 53706, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The interstellar medium has a thick disk structure (|z | ≲ 1500 pc, the ECL or extracloud layer) with a thin zone of cloud contamination at |z | ≲ 100 pc. The properties of all components other than clouds (e.g. cosmic rays, magnetic field, extracloud matter, pressure) drop slowly with |z| across the thick distribution, giving this layer a very important influence in the evolution of superbubbles. It seems likely to quench blowout or breakout and virtually all fountain activity. The weight of this layer stabilizes the clouds at low z; its high pressure and low density provide a cushion for impacts of infailing clouds.

Type
VII. The Structure of the Interstellar Medium
Copyright
Copyright © Springer-Verlag 1989

References

Abbott, D. C. 1982, Ap. J., 263, 723.CrossRefGoogle Scholar
Badhwar, G. D., and Stevens, S. A.,1977, Ap. J., 212, 494.Google Scholar
Bienayme, O., Robin, A. C., and Creze, M. 1987, Astron. Astrophys., 180, 94.Google Scholar
Bloemen, J. B. G. M. 1987, Ap. J., 322, 694.Google Scholar
Boulares, A. and Cox, D. P. 1989, in preparation.Google Scholar
Cowie, L. L. and York, D. G. 1978, Ap. J., 223, 876.CrossRefGoogle Scholar
Cox, D. P. 1981, Ap. J., 245, 534.Google Scholar
Cox, D. P. 1986, in Workshop on Model Nebulae, Observ. de Meudon; ed: Pequinot, D. (Paris Observ.) p. 11.Google Scholar
Cox, D. P. 1988, in IAU Colloq. 101, Interaction of Supernova Remnants with the Interstellar Medium, eds. Landecker, T. L. and Roger, R. S. (Cambridge: Cambridge University Press) p. 73.Google Scholar
Cox, D. P. and Snowden, S. L. 1986, Adv. Space Res. 6, 97.Google Scholar
Cox, D. P. and Slavin, J. D. 1989, in EUV Astronomy, eds. Malina, R. F. and Bowyer, S. (Pergamon), in press.Google Scholar
Edgar, R. J. and Savage, B. D. 1989, Ap. J., 340, 762.CrossRefGoogle Scholar
Field, G. B., Goldsmith, D. V., and Habing, H. J. 1969, Ap. J. (Letters), 155, L149.Google Scholar
Harrington, J. P. and Bregman, J. N. 1986, Ap. J., 309, 833.Google Scholar
Heiles, C. 1987, Ap. J., 315, 555.Google Scholar
Hoyle, F. and Ellis, G. R. A. 1963, Australian J. Physics, 16, 1.Google Scholar
Kraushaar, U. L. 1963, Proc. Int. Conf. on Cosmic Rays at Jaipur, 3, 379.Google Scholar
Lockman, F. J., Hobbs, L. M., and shull, J. M. 1986, Ap. J., 301, 380.Google Scholar
McKee, C. F. and Ostriker, J. P. 1977, Ap. J., 218, 148.Google Scholar
Mouschovias, T. Ch. 1974, Ap. J., 192, 37.Google Scholar
Panagia, N. and Terzian, Y. 1984, Ap. J., 287, 315.Google Scholar
Reynolds, R. J. 1984, Ap. J., 282, 191.Google Scholar
Reynolds, R. J. 1989a, Ap. J., 345, in press (Oct. 15).Google Scholar
Reynolds, R. J. 1989b, preprint.Google Scholar
Reynolds, R. J. 1989c, Proc. of IAU Symposium 139, Galactic and Extragalactic Background Radiation, eds: Bowyer, , Leinert, (Dordrecht:Reidel) in press.Google Scholar
Sciama, D. V. 1972, Nature, 240, 456.Google Scholar
Simard-Normandin, M., and Krönberg, P. P. 1980, Ap. J., 242, 74.Google Scholar
Spitzer, L. 1989, Mat. Fys. Medd. Dan. Vid. Solsk., in press.Google Scholar