Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T14:07:42.842Z Has data issue: false hasContentIssue false

Weak Interaction Processes in Core-Collapse Supernovae

Published online by Cambridge University Press:  19 September 2016

G. Martínez-Pinedo
Affiliation:
Institut d’Estudis Espacials de Catalunya, Barcelona, Spain;martinez@ieec.fcr.es Institució Catalana de Recerca i Estudis Avançais, Barcelona, Spain
K. Langanke
Affiliation:
Institute for Physics and Astronomy, University of Århus, Denmark
J.M. Sampaio
Affiliation:
Institute for Physics and Astronomy, University of Århus, Denmark
D.J. Dean
Affiliation:
Physics Division, Oak Ridge National Laboratory, Tennessee, USA
W.R. Hix
Affiliation:
Physics Division, Oak Ridge National Laboratory, Tennessee, USA Department of Physics and Astronomy, University of Tennessee, USA Joint Institute for Heavy Ion research, Oak Ridge, Tennessee, USA
O.E.B. Messer
Affiliation:
Physics Division, Oak Ridge National Laboratory, Tennessee, USA Department of Physics and Astronomy, University of Tennessee, USA Joint Institute for Heavy Ion research, Oak Ridge, Tennessee, USA
A. Mezzacappa
Affiliation:
Physics Division, Oak Ridge National Laboratory, Tennessee, USA
M. Liebendorfer
Affiliation:
Physics Division, Oak Ridge National Laboratory, Tennessee, USA Department of Physics and Astronomy, University of Tennessee, USA Canadian Institute for Theoretical Astrophysics, Toronto, Ontario, Canada
H.-Th. Janka
Affiliation:
Max-Planck-Institut fur Astrophysik, Garching, Germany
M. Rampp
Affiliation:
Max-Planck-Institut fur Astrophysik, Garching, Germany

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernova simulations to date have assumed that during core collapse electron captures (EC) occur dominantly on free protons, while captures on heavy nuclei are Pauli-blocked and are ignored. Using microscopic calculations we show that the EC rates on heavy nuclei are large enough that, in contrast to previous assumptions, electron capture on nuclei dominates over capture on free protons. This leads to significant changes in core collapse simulations.

Type
Part IV Supernovae: Models
Copyright
Copyright © Springer-Verlag 2005

References

1. Bravo, E., García-Senz, D.: Mon. Not. R. Astron. Soc. 307, 984 (1999)Google Scholar
2. Bruenn, S.W.: Astrophys. J. Suppl. 58, 771 (1985)Google Scholar
3. Cooperstein, J., Wambach, J.: Nuc. Phys. 420, 591 (1984)Google Scholar
4. Fuller, G.M., Fowler, W.A., Newman, M.J.: Astrophys. J. Suppl. 42, 447 (1980)Google Scholar
5. Fuller, G.M., Fowler, W.A., Newman, M.J.: Astrophys. J. Suppl. 48, 279 (1982)Google Scholar
6. Fuller, G.M., Fowler, W.A., Newman, M.J.: Astrophys. J. 252, 715 (1982)Google Scholar
7. Fuller, G.M.: Astrophys. J. 252, 741 (1982)Google Scholar
8. Fuller, G.M., Fowler, W.A., Newman, M.J.: Astrophys. J. 293, 1 (1985)Google Scholar
9. Heger, A., Langanke, K., Martínez-Pinedo, G., Woosley, S.E.: Phys. Rev. Lett. 86, 1678 (2001)Google Scholar
10. Heger, A., Langanke, K., Martínez-Pinedo, G., Woosley, S.E.: Astrophys. J. 560, 307 (2001)Google Scholar
11. Hix, W.R.: Ph.D. Thesis (Harvard Univ.: 1995)Google Scholar
12. Koonin, S.E., Dean, D.J., Langanke, K.: Phys. Rep. 278, 2 (1997)Google Scholar
13. Langanke, K., Martínez-Pinedo, G.: Nue. Phys. 673, 481 (2000)Google Scholar
14. Langanke, K., Martínez-Pinedo, G.: At. Data. Nuci. Data Tables 79, 1 (2001)Google Scholar
15. Langanke, K., Kolbe, E., Dean, D.J.: Phys. Rev. C 63, 032801 (2001)Google Scholar
16. Langanke, K. etal.: Phys. Rev. Lett. 90, 241102 (2003)Google Scholar
17. Martínez-Pinedo, G., Langanke, K., Janka, H.-T., Rampp, M.: in preparationGoogle Scholar
18. Mezzacappa, A. etal.: Phys. Rev. Lett. 86, 1935 (2001)Google Scholar
19. Rampp, M., Janka, H.-T.: Astron. Astrophys. 396, 361 (2002)Google Scholar