Skip to main content
    • Aa
    • Aa

A BAYESIAN APPROACH TO STOCHASTIC COST-EFFECTIVENESS ANALYSIS: An Illustration and Application to Blood Pressure Control in Type 2 Diabetes

  • Andrew H. Briggs (a1)
    • Published online: 25 May 2001

The aim of this paper is to discuss the use of Bayesian methods in cost-effectiveness analysis (CEA) and the common ground between Bayesian and traditional frequentist approaches. A further aim is to explore the use of the net benefit statistic and its advantages over the incremental cost-effectiveness ratio (ICER) statistic. In particular, the use of cost-effectiveness acceptability curves is examined as a device for presenting the implications of uncertainty in a CEA to decision makers. Although it is argued that the interpretation of such curves as the probability that an intervention is cost-effective given the data requires a Bayesian approach, this should generate no misgivings for the frequentist. Furthermore, cost-effectiveness acceptability curves estimated using the net benefit statistic are exactly equivalent to those estimated from an appropriate analysis of ICERs on the cost-effectiveness plane. The principles examined in this paper are illustrated by application to the cost-effectiveness of blood pressure control in the U.K. Prospective Diabetes Study (UKPDS 40). Due to a lack of good-quality prior information on the cost and effectiveness of blood pressure control in diabetes, a Bayesian analysis assuming an uninformative prior is argued to be most appropriate. This generates exactly the same cost-effectiveness results as a standard frequentist analysis.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Technology Assessment in Health Care
  • ISSN: 0266-4623
  • EISSN: 1471-6348
  • URL: /core/journals/international-journal-of-technology-assessment-in-health-care
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 140 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.