Skip to main content Accessibility help
×
Home

CHALLENGES AND METHODOLOGIES IN USING PROGRESSION FREE SURVIVAL AS A SURROGATE FOR OVERALL SURVIVAL IN ONCOLOGY

  • Karla Hernandez-Villafuerte (a1), Alastair Fischer (a2) and Nicholas Latimer (a3)

Abstract

Objectives:

A primary outcome in oncology trials is overall survival (OS). However, to estimate OS accurately requires a sufficient number of patients to have died, which may take a long time. If an alternative end point is sufficiently highly correlated with OS, it can be used as a surrogate. Progression-free survival (PFS) is the surrogate most often used in oncology, but does not always satisfy the correlation conditions for surrogacy. We analyze the methodologies used when extrapolating from PFS to OS.

Methods:

Davis et al. previously reviewed the use of surrogate end points in oncology, using papers published between 2001 and 2011. We extend this, reviewing papers published between 2012 and 2016. We also examine the reporting of statistical methods to assess the strength of surrogacy.

Results:

The findings from 2012 to 2016 do not differ substantially from those of 2001 to 2011: the same factors are shown to affect the relationship between PFS and OS. The proportion of papers reporting individual patient data (IPD), strongly recommended for full assessment of surrogacy, remains low: 33 percent. A wide range of methods has been used to determine the appropriateness of surrogates. While usually adhering to reporting standards, the standard of scholarship appears sometimes to be questionable and the reporting of results often haphazard.

Conclusions:

Standards of analysis and reporting PFS to OS surrogate studies should be improved by increasing the rigor of statistical reporting and by agreeing to a minimum set of reporting guidelines. Moreover, the use of IPD to assess surrogacy should increase.

Copyright

Footnotes

Hide All

Funding: The Pharmaceutical Oncology Initiative (POI) of the Association of the British Pharmaceutical Industry (ABPI) commissioned the Office of Health Economics (OHE) in April 2016 to undertake a landscape study on methods and approaches to extrapolation from clinical endpoints measured in trials involving overall survival. We gratefully acknowledge the contributions of Francesco Pignatti (EMA), Eli Gavraj and Ian Watson (NICE), Prof Andrew Stevens (Chair of a NICE Appraisal Committee), Oriana Ciani and Prof Rod Taylor (University of Exeter Medical School), and POI member organizations. Nevertheless, views expressed in this paper are those of the authors and are not necessarily those of POI, EMA, NICE or the University of Exeter. Karla Hernandez-Villafuerte's previous affiliation was Office of Health Economics. Southside, 7th Floor, 105 Victoria Street, London SW1E 6QT.

Footnotes

References

Hide All
1.Davis, S, Tappenden, P, Cantrell, A. A review of studies examining the relationship between progression-free survival and overall survival in advanced or metastatic cancer. London: National Institute for Health and Care Excellence (NICE), 2012.
2.Latimer, NR. Survival analysis for economic evaluations alongside clinical trials: Extrapolation with patient-level data. Med Decis Making. 2013;33:743-754.
3.Latimer, NR, Abrams, KR, Lambert, PC, et al. Adjusting survival time estimates to account for treatment switching in randomized controlled trials: An economic evaluation context. Med Decis Making. 2014;34:387-402.
4.Ciani, O, Davis, S, Tappenden, P, et al. Validation of surrogate endpoints in advanced solid tumors: Systematic review of statistical methods, results, and implications for policy makers. Int J Technol Assess Health Care. 2014;30:312-324.
5.Imai, H, Mori, K, Ono, A, et al. Individual-level data on the relationships of progression-free survival and post-progression survival with overall survival in patients with advanced non-squamous non-small cell lung cancer patients who received second-line chemotherapy. Med Oncol. 2014;31:1-7.
6.Imai, H, Mori, K, Wakuda, K, et al. Progression-free survival, post-progression survival, and tumor response as surrogate markers for overall survival in patients with extensive small cell lung cancer. Ann Thorac Med. 2015;10:61-66.
7.Kasahara, N, Imai, H, Kaira, K, et al. Clinical impact of post-progression survival on overall survival in patients with limited-stage disease small cell lung cancer after first-line chemoradiotherapy. Radiol Oncol. 2015;49:409-415.
8.Yoshino, R, Imai, H, Mori, K, et al. Surrogate endpoints for overall survival in advanced non-small-cell lung cancer patients with mutations of the epidermal growth factor receptor gene. Mol Clin Oncol. 2014;2:731-736.
9.Yoshino, R, Imai, H, Mori, K, et al. Clinical impact of postprogression survival for overall survival in elderly patients (aged 75 years or older) with advanced nonsmall cell lung cancer. J Cancer Res Ther. 2015;11:606.
10.Shitara, K, Matsuo, K, Muro, K, Doi, T, Ohtsu, A. Progression-free survival and post-progression survival in patients with advanced gastric cancer treated with first-line chemotherapy. J Cancer Res Clin Oncol. 2013;139:1383138-9.
11.Aboshi, M, Kaneko, M, Narukawa, M. Factors affecting the association between overall survival and progression-free survival in clinical trials of first-line treatment for patients with advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 2014;140:839-848.
12.Bria, E, Massari, F, Maines, F, et al. Progression-free survival as primary endpoint in randomized clinical trials of targeted agents for advanced renal cell carcinoma: Correlation with overall survival, benchmarking and power analysis. Crit Rev Oncol Hematol. 2015;93:50-59.
13.Delea, TE, Khuu, A, Heng, DY, Haas, T, Soulieres, D. Association between treatment effects on disease progression end points and overall survival in clinical studies of patients with metastatic renal cell carcinoma. Br J Cancer. 2012;107:1059-1068.
14.Li, X, Liu, S, Gu, H, Wang, D. Surrogate end points for survival in the target treatment of advanced non-small-cell lung cancer with gefitinib or erlotinib. J Cancer Res Clin Oncol. 2012;138:1963-1969.
15.Shitara, K, Ikeda, J, Yokota, T, et al. Progression-free survival and time to progression as surrogate markers of overall survival in patients with advanced gastric cancer: Analysis of 36 randomized trials. Invest New Drugs. 2012;30:1224-1231.
16.Félix, J, Aragão, F, Almeida, JM, et al. Time-dependent endpoints as predictors of overall survival in multiple myeloma. BMC Cancer. 2013;13:1-12.
17.Giessen, C, Laubender, RP, Ankerst, DP, et al. Progression-free survival as a surrogate endpoint for median overall survival in metastatic colorectal cancer: Literature-based analysis from 50 randomized first-line trials. Clin Cancer Res. 2013;19:225-235.
18.Han, K, Ren, M, Wick, W, et al. Progression-free survival as a surrogate endpoint for overall survival in glioblastoma: A literature-based meta-analysis from 91 trials. Neuro Oncol. 2013;16:696-706.
19.Petrelli, F, Barni, S. Correlation of progression-free and post-progression survival with overall survival in advanced colorectal cancer. Ann Oncol. 2013;24:186-192.
20.Petrelli, F, Barni, S. Is overall survival still the primary endpoint in maintenance non-small cell lung cancer studies? An analysis of phase III randomised trials. Transl Lung Cancer Res. 2013;2:6-13.
21.Sidhu, R, Rong, A, Dahlberg, S. Evaluation of progression-free survival as a surrogate endpoint for survival in chemotherapy and targeted agent metastatic colorectal cancer trials. Clin Cancer Res. 2013;19:969-976.
22.Beauchemin, C, Cooper, D, Lapierre, M-È, Yelle, L, Lachaine, J. Progression-free survival as a potential surrogate for overall survival in metastatic breast cancer. Onco Targets Ther. 2014;7:1101-10.
23.Flaherty, KT, Hennig, M, Lee, SJ, et al. Surrogate endpoints for overall survival in metastatic melanoma: A meta-analysis of randomised controlled trials. Lancet Oncol. 2014;15:297-304.
24.Singh, S, Wang, X, Law, C. Association between time to disease progression end points and overall survival in patients with neuroendocrine tumors. Gastrointest Cancer. 2014;4:103-113.
25.Cartier, S, Zhang, B, Rosen, VM, et al. Relationship between treatment effects on progression-free survival and overall survival in multiple myeloma: A systematic review and meta-analysis of published clinical trial data. Oncol Res Treat. 2015;38:88-94.
26.Chen, Y-P, Sun, Y, Chen, L, et al. Surrogate endpoints for overall survival in combined chemotherapy and radiotherapy trials in nasopharyngeal carcinoma: Meta-analysis of randomised controlled trials. Radiother Oncol. 2015;116:157-166.
27.Giessen, C, Laubender, RP, Ankerst, DP, et al. Surrogate endpoints in second-line treatment for mCRC: A systematic literature-based analysis from 23 randomised trials. Acta Oncol. 2015;54:187-193.
28.Petrelli, F, Coinu, A, Borgonovo, K, Cabiddu, M, Barni, S. Progression-free survival as surrogate endpoint in advanced pancreatic cancer: Meta-analysis of 30 randomized first-line trials. Hepatobiliary Pancreat Dis Int. 2015;14:124-131.
29.Amir, E, Seruga, B, Kwong, R, Tannock, IF, Ocaña, A. Poor correlation between progression-free and overall survival in modern clinical trials: Are composite endpoints the answer? Eur J Cancer. 2012;48:385-388.
30.Hotta, K, Suzuki, E, Di Maio, M, et al. Progression-free survival and overall survival in phase III trials of molecular-targeted agents in advanced non-small-cell lung cancer. Lung Cancer. 2013;79:20-26.
31.Kawakami, H, Okamoto, I, Hayashi, H, et al. Postprogression survival for first-line chemotherapy in patients with advanced gastric cancer. Eur J Cancer. 2013;49:3003-3009.
32.Petrelli, F, Barni, S. Surrogate endpoints in metastatic breast cancer treated with targeted therapies: An analysis of the first-line phase III trials. Med Oncol. 2014;31:1-8.
33.Adunlin, G, Cyrus, JWW, Dranitsaris, G. Correlation between progression-free survival and overall survival in metastatic breast cancer patients receiving anthracyclines, taxanes, or targeted therapies: A trial-level meta-analysis. Breast Cancer Res Treat. 2015;154:591-608.
34.Hotta, K, Kato, Y, Leighl, N, et al. Magnitude of the benefit of progression-free survival as a potential surrogate marker in phase 3 trials assessing targeted agents in molecularly selected patients with advanced non-small cell lung cancer: Systematic review. PLoS One. 2015;10:e0121211.
35.Johnson, KR, Liauw, W, Lassere, MND. Evaluating surrogacy metrics and investigating approval decisions of progression-free survival (PFS) in metastatic renal cell cancer: A systematic review. Ann Oncol. 2015;26:485-496.
36.Özer-Stillman, I, Strand, L, Chang, J, Mohamed, AF, Tranbarger-Freier, KE. Meta-analysis for the association between overall survival and progression-free survival in gastrointestinal stromal tumor. Clin Cancer Res. 2015;21:295-302.
37.Suzuki, H, Hirashima, T, Okamoto, N, et al. Relationship between progression-free survival and overall survival in patients with advanced non-small cell lung cancer treated with anticancer agents after first-line treatment failure. Asia Pac J Clin Oncol. 2015;11:121-128.
38.Moriwaki, T, Yamamoto, Y, Gosho, M, et al. Correlations of survival with progression-free survival, response rate, and disease control rate in advanced biliary tract cancer: A meta-analysis of randomised trials of first-line chemotherapy. Br J Cancer. 2016;114:881-888.
39.Petrelli, F, Barni, S. Surrogate end points and postprogression survival in renal cell carcinoma: An analysis of first-line trials with targeted therapies. Clin Genitourin Cancer. 2013;11:385-389.
40.Shitara, K, Matsuo, K, Muro, K, Doi, T, Ohtsu, A. Correlation between overall survival and other endpoints in clinical trials of second-line chemotherapy for patients with advanced gastric cancer. Gastric Cancer. 2014;17:362-370.
41.Ciani, O, Buyse, M, Garside, R, Peters, J, Saad, ED, Stein, K, et al. Meta-analyses of randomized controlled trials show suboptimal validity of surrogate outcomes for overall survival in advanced colorectal cancer. J Clin Epidemiol. 2015;68:833-842.
42.Terashima, T, Yamashita, T, Takata, N, et al. Post-progression survival and progression-free survival in patients with advanced hepatocellular carcinoma treated by sorafenib. Hepatol Res. 2015;46:650-656.
43.Galsky, MD, Krege, S, Lin, CC, et al. Relationship between 6-and 9-month progression-free survival and overall survival in patients with metastatic urothelial cancer treated with first-line cisplatin-based chemotherapy. Cancer. 2013;119:3020-3026.
44.Halabi, S, Rini, B, Escudier, B, Stadler, WM, Small, EJ. Progression-free survival as a surrogate endpoint of overall survival in patients with metastatic renal cell carcinoma. Cancer. 2014;120:52-60.
45.Négrier, S, Bushmakin, AG, Cappelleri, JC, et al. Assessment of progression-free survival as a surrogate end-point for overall survival in patients with metastatic renal cell carcinoma. Eur J Cancer. 2014;50:1766-1771.
46.Laporte, S, Squifflet, P, Baroux, N, et al. Prediction of survival benefits from progression-free survival benefits in advanced non-small-cell lung cancer: Evidence from a meta-analysis of 2334 patients from 5 randomised trials. BMJ Open. 2013;3:e001802.
47.Mauguen, A, Pignon, J-P, Burdett, S, et al. Surrogate endpoints for overall survival in chemotherapy and radiotherapy trials in operable and locally advanced lung cancer: A re-analysis of meta-analyses of individual patients' data. Lancet Oncol. 2013;14:619-26.
48.Agarwal, N, Bellmunt, J, Maughan, BL, et al. Six-month progression-free survival as the primary endpoint to evaluate the activity of new agents as second-line therapy for advanced urothelial carcinoma. Clin Genitourin Cancer. 2014;12:130-137.
49.Foster, NR, Renfro, LA, Schild, SE, et al. Multitrial evaluation of progression-free survival as a surrogate end point for overall survival in first-line extensive-stage small-cell lung cancer. J Thorac Oncol. 2015;10:1099-1106.
50.Shi, Q, De Gramont, A, Grothey, A, et al. Individual patient data analysis of progression-free survival versus overall survival as a first-line end point for metastatic colorectal cancer in modern randomized trials: Findings from the analysis and research in cancers of the digestive system database. J Clin Oncol. 2015;33:22-28.
51.Paoletti, X, Oba, K, Bang, Y-J, et al. Progression-free survival as a surrogate for overall survival in advanced/recurrent gastric cancer trials: A meta-analysis. J Natl Cancer Inst. 2013;105:1667-70.
52.Michiels, S, Pugliano, L, Marguet, S, et al. Progression-free survival as surrogate endpoint for overall survival in clinical trials of HER2-targeted agents in HER2-positive metastatic breast cancer. Ann Oncol. 2016;27:1029-1034.
53.IQWiG. Validity of surrogate endpoints in oncology: Executive summary of rapid rep–rt A10-05, Version 1.1. Institute for Quality and Efficiency in Health Care: Executive Summaries. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2005.
54.Lencioni, R, Llovet, JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52-60.
55.Burzykowski, T, Buyse, M, Piccart-Gebhart, MJ, et al. Evaluation of tumor response, disease control, progression-free survival, and time to progression as potential surrogate end points in metastatic breast cancer. J Clin Oncol. 2008;26:1987-1992.
56.Kim, C, Prasad, V. Strength of validation for surrogate end points used in the US Food and Drug Administration's approval of oncology drugs. Mayo Clin Proc. 2016;91:713-725.
57.Prentice, RL. Surrogate endpoints in clinical trials: Definition and operational criteria. Stat Med. 1989;8:431-440.
58.Ciani, O, Buyse, M, Drummond, M, et al. Use of surrogate end points in healthcare policy: A proposal for adoption of a validation framework. Nat Rev Drug Discov. 2016;15:516.
59.Buyse, M, Molenberghs, G, Burzykowski, T, Renard, D, Geys, H. The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics. 2000;1:49-67.
60.Stevens, W, Philipson, T, Wu, Y, Chen, C, Lakdawalla, D. A cost-benefit analysis of using evidence of effectiveness in terms of progression free survival in making reimbursement decisions on new cancer therapies. Forum Health Econ Policy. 2014;17:21-52.
61.Saad, ED, Katz, A. Progression-free survival and time to progression as primary end points in advanced breast cancer: Often used, sometimes loosely defined. Ann Oncol. 2008;20:460-464.
62.Kemp, R, Prasad, V. Surrogate endpoints in oncology: When are they acceptable for regulatory and clinical decisions, and are they currently overused?. BMC Med. 2017;15:134.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed