Skip to main content Accessibility help
×
Home

Clinical Relevance of Home Monitoring of Vital Signs and Blood Glucose Levels: A Narrative Review

  • Jessica P. Lee (a1), Georgina Freeman (a1), Michelle Cheng (a1), Lauren Brown (a2), Hector De la Hoz Siegler (a3) and John Conly (a1) (a4) (a5)...

Abstract

Objectives

We sought to assess the presence and reporting quality of peer-reviewed literature concerning the accuracy, precision, and reliability of home monitoring technologies for vital signs and glucose determinations in older adult populations.

Methods

A narrative literature review was undertaken searching the databases Medline, Embase, and Compendex. Peer-reviewed publications with keywords related to vital signs, monitoring devices and technologies, independent living, and older adults were searched. Publications between the years 2012 and 2018 were included. Two reviewers independently conducted title and abstract screening, and four reviewers independently undertook full-text screening and data extraction with all disagreements resolved through discussion and consensus.

Results

Two hundred nine articles were included. Our review showed limited assessment and low-quality reporting of evidence concerning the accuracy, precision, and reliability of home monitoring technologies. Of 209 articles describing a relevant device, only 45 percent (n = 95) provided a citation or some evidence to support their validation claim. Of forty-eight articles that described the use of a comparator device, 65 percent (n = 31) used low-quality statistical methods, 23 percent (n = 11) used moderate-quality statistical methods, and only 12 percent (n = 6) used high-quality statistical methods.

Conclusions

Our review found that current validity claims were based on low-quality assessments that do not provide the necessary confidence needed by clinicians for medical decision-making purposes. This narrative review highlights the need for standardized health technology reporting to increase health practitioner confidence in these devices, support the appropriate adoption of such devices within the healthcare system, and improve health outcomes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Clinical Relevance of Home Monitoring of Vital Signs and Blood Glucose Levels: A Narrative Review
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Clinical Relevance of Home Monitoring of Vital Signs and Blood Glucose Levels: A Narrative Review
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Clinical Relevance of Home Monitoring of Vital Signs and Blood Glucose Levels: A Narrative Review
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Author for correspondence: John Conly, E-mail: john.conly@albertahealthservices.ca

Footnotes

Hide All

We thank Dr. David B. Hogan for acting as an external reviewer providing technical editing, language editing, and proofreading which greatly improved the manuscript. We thank Heather Ganshorn for her help in developing the search strategy for the literature review. We thank the University of Calgary Vice President Research Matching Funds Competition: Engineering Solutions for Health, for funding support.

Footnotes

References

Hide All
1.Canada.ca. [internet] (2018) Seniors. [cited November 10, 2018]. https://www.canada.ca/en/health-canada/services/healthy-living/seniors.html.
2.United Nations, Department of Economic and Social Affairs, Population Division (2018) World population prospects: The 2017 revision, key findings and advance tables. Report No.: ESA/P/WP/248.
3.Lim, WS, Wong, SF, Leong, I, Choo, P, Pang, WS (2017) Forging a frailty-ready healthcare system to meet population aging. Int J Environ Res Public Health 14, 116.
4.CDC.gov. [internet] (2018) Healthy places [cited November 10, 2018]. https://www.cdc.gov/healthyplaces/terminology.htm.
5.Marek, KD, Rantz, MJ (2000) Aging in place: A new model for long-term care. Nurs Admin Q 24, 111.
6.Yuchi, Y, Kalamaras, J, Kelly, L, Hornick, D, Yucel, R (2015) Is aging in place delaying nursing home admission? J Am Med Dir Assoc 16, 900.e1-900.e6.
7.Lampkin, C, Barrett, L (2015) Home and Community Preferences Survey [Internet]. AARP.org; [cited November 28, 2018]. https://www.aarp.org/research/topics/community/info-2015/Home-and-Community-Preferences-45Plus.html.
8.Peek, STM, Aarts, S, Wouters, EJ (2017 ) Can smart home technology deliver on the promise of independent living? In: van Hoof, J, Demiris, G, Wouters, E, eds. Handbook of Smart Homes, Health Care and Well-being. Springer, Cham; pp. 203214.
9.Cellar, GC, Sparks, RS (2015) Home telemonitoring of vital signs – Technical challenges and future directions. IEEE J Biomed Health Inform 19, 8291.
10.Elenko, E, Underwoord, L, Zohar, D (2015) Defining digital medicine. Nat Biotechnol 33, 456461.
11.Liu, L, Stroulia, E, Nikolaidis, J, Miguel-Cruz, A, Rincon, AR (2016) Smart home and home health monitoring technologies for older adults: A systematic review. Int J Med Inform 91, 4459.
12.Carlisle, BG (2016) Version 2.8 [software]. [cited May 11, 2018] Numbat meta-analysis extraction manager. https://github.com/bgcarlisle/Numbat.
13.Majumder, S, Mondal, T, Deen, MJ (2017) Wearable sensors for remote health monitoring. Sensors 17, 130175.
14.Carstemsen, L, Rosenberger, ME, Smith, K, Modrek, S (2015) Optimizing health in aging societies. Public Policy Aging Rep 25, 3842.
15.Chiauzzi, E, Rodarte, C, DasMahaptra, P (2015) Patient-centered activity monitoring in the self-management of chronic health conditions. BMC Med 13, 77.
16.Peek, ST, Wouters, E, van Hoof, J, Luijkx, KG, Boeije, HR, Vrijhoef, HJ (2014) Factors influencing acceptance of technology for aging in place: A systematic review. Int J Med Inform 83, 235248.
17.Khosravi, P, Ghapanchi, A (2016) Investigating the effectiveness of technologies applied to assist seniors: A systematic literature review. Int J Med Inform 85, 1726.
18.Kumar, AA, Hennek, JW, Smith, BS, et al. (2015) From the bench to the field in low-cost diagnostics: Two case studies. Angew Chem Int Ed Engl 32, 58365853.
19.Whiting, PF, Rutjes, AWS, Westwood, ME, et al. (2011) QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies Ann Intern Med 155, 529536.
20.Cohen, JF, Korevaar, DA, Altman, DG, et al. (2016) STARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 6, e012799.
21.Giavarina, D (2015) Understanding Bland Altman analysis. Biochem Med (Zagreb) 25, 141151.
22.McHugh, ML (2012) Interrater reliability: The kappa statistic. Biochem Med (Zagreb) 22, 276282.
23.Vermeulen, K, Thas, O, Vansteelandt, S (2015) Increasing the power of the Mann-Whitney test in randomized experiments through flexible covariate adjustment. Stat Med 34, 10121030.

Keywords

Type Description Title
WORD
Supplementary materials

Lee et al. supplementary material
Lee et al. supplementary material 1

 Word (46 KB)
46 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed