Skip to main content Accessibility help


  • Annetine C. Gelijns (a1), Mark J. Russo (a2), Kimberly N. Hong (a1), Lawrence D. Brown (a3), Deborah D. Ascheim (a1) and Alan J. Moskowitz (a1)...


Background: In recent years, there has been growing interest in evaluating the health and economic impact of medical devices. Payers increasingly rely on cost-effectiveness analyses in making their coverage decisions, and are adopting value-based purchasing initiatives. These analytic approaches, however, have been shaped heavily by their use in the pharmaceutical realm, and are ill-adapted to the medical device context.

Methods: This study focuses on the development and evaluation of left ventricular assist devices (LVADs) to highlight the unique challenges involved in the design and conduct of device trials compared with pharmaceuticals.

Results: Devices are moving targets characterized by a much higher degree of post-introduction innovation and “learning by using” than pharmaceuticals. The cost effectiveness ratio of left ventricular assist devices for destination therapy, for example, decreased from around $600,000 per life year saved based on results from the pivotal trial to around $100,000 within a relatively short time period.

Conclusions: These dynamics pose fundamental challenges to the evaluation enterprise as well as the policy-making world, which this paper addresses.



Hide All
1.Porter, ME. What is value in health care? N Engl J Med. 2010;363:24772481.
2.Gelijns, AC, Killelea, B, Vitale, M, Mankad, V, Moskowitz, AJ. The dynamics of pediatric device innovation: Putting evidence in context. In: Safe medical devices for children. Washington, DC: Institute of Medicine, National Academy Press; 2006:302326.
3.Gelijns, AC, Rosenberg, N. The dynamics of technological change in medicine. Health Aff (Millwood). 1994;13:2846.
4.Drummond, M, Griffin, A, Tarricone, R. Economic evaluation for devices and drugs–same or different? Value Health. 2009;12:402404.
5.Sorenson, C, Tarricone, R, Siebert, M, Drummond, M. Applying health economics for policy decision making: Do devices differ from drugs? Europace. 2011;13 (Suppl 2):ii54ii58.
6.Taylor, RS, Iglesias, CP. Assessing the clinical and cost-effectiveness of medical devices and drugs: Are they that different? Value Health. 2009;12:404406.
7.Ernst & Young. Pulse of the Industry Medical Technology Report 2012. -$FILE/Pulse_medical_technology_report_2012.pdf (accessed July 23, 2013).
8.Kirisits, A, Redekop, WK. The economic evaluation of medical devices: Challenges ahead. Appl Health Econ Health Policy. 2013;11:1526.
9.US Food and Drug Administration. Medical devices. 2012 Monthly PMA Listings. (accessed July 23, 2013).
10.US Food and Drug Administration. Medical devices. 2012 Medical Device 510(k) Clearances. (accessed July 23, 2013).
11.Hulstaert, F, Neyt, M, Vinck, I, et al.Pre-market clinical evaluations of innovative high-risk medical devices in Europe. Int J Technol Assess Health Care. 2012;28:278284.
12.Dhruva, SS, Bero, LA, Redberg, RF. The strength of study evidence examined by the FDA in pre-market approval of cardiovascular devices. JAMA. 2009;302:26792685.
13.Chen, CE, Dhruva, SS, Redberg, RF. Inclusion of comparative effectiveness data in high-risk cardiovascular device studies at the time of premarket approval. JAMA. 2012;308:17401742.
14.Rose, EA, Gelijns, AC, Moskowitz, AJ, et al.Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med. 2001;345:14351443.
15.National Coverage Determinations Manual. (accessed July 23, 2013).
16.Parides, MK, Moskowitz, AJ, Ascheim, DD, Rose, EA, Gelijns, AC. Progress versus precision: Challenges in clinical trial design for left ventricular assist devices. Ann Thorac Surg. 2006;82:11401146.
17.National Institute for Health Care Management, (NIHCM). Changing patterns of pharmaceutical innovation 2002. (accessed July 23, 2013).
18.Dowling, RD, Park, SJ, Pagani, FD, et al.HeartMate VE LVAS design enhancements and its impact on device reliability. Eur J Cardiothorac Surg. 2004;25:958963.
19.Alli, OO, Booker, JD, Lennon, RJ, et al.Transcatheter aortic valve implantation. Assessing the learning curve. JACC Cardiovasc Interv. 2012;5:7279.
20.Lange, R, Bleiziffer, S, Mazzitelli, D, et al.Improvements in transcatheter aortic valve implantation outcomes in lower surgical risk patients. A glimpse into the future. J Am Coll Cardiol. 2012;59:280287.
21.Pisano, GP, Bohmer, R, Edmondson, AC. Organizational differences in rates of learning: Evidence from the adoption of minimally invasive cardiac surgery. Manage Sci. 2001;47:752768.
22.Holzhey, DM, Seeburger, J, Misfeld, M, Borger, MA, Mohr, FW. Learning minimally invasive mitral valve surgery: A cumulative sum sequential probability analysis of 3895 operations from a single high-volume center. Circulation. 2013;128:483491.
23.Rosenberg, N.Inside the black box: Technology and economics. Cambridge: Cambridge University Press; 1983
24.Lietz, K, Long, JW, Kfoury, AG, et al.Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: Implications for patient selection. Circulation. 2007;116:497505.
25.Cowger, J, Sundareswaran, K, Rogers, JG, et al.Predicting survival in patients receiving continuous flow left ventricular assist devices: The HeartMate II risk score. J Am Coll Cardiol. 2013;61:313321.
26.Gregoric, I, Wadia, Y, Radovancevic, B, et al.HeartMate vented-electric left ventricular assist system: Technique for intrathoracic or intraperitoneal implantation via a left thoracotomy. J Heart Lung Transplant. 2004;23:759762.
27.Pasque, MK, Hanselman, T, Shelton, K, Hedges, R, Keohe-Huck, B. Operative strategies to reduce complications in Novacor left ventricular assist device placement. J Card Surg. 2004;19:329335.
28.Wagner, F, Buz, S, Neumeyer, HH, Hetzer, R, Hocher, B, Nitric oxide inhalation modulates endothelin-1 plasma concentration gradients following left ventricular assist device implantation. J Cardiovasc Pharmacol. 2004;44 (Suppl 1):S89S91.
29.Holdy, K, Dembitsky, W, Eaton, LL, et al.Nutrition assessment and management of left ventricular assist device patients. J Heart Lung Transplant. 2005;24:16901696.
30.Dang, NC, Naka, Y. Perioperative pharmacotherapy in patients with left ventricular assist devices. Drugs Aging. 2004;21:9931012.
31.Holman, WL, Rayburn, BK, McGiffin, DC, et al.Infection in ventricular assist devices: Prevention and treatment. Ann Thorac Surg. 2003;75(Suppl):S48S57.
32.Zietkiewicz, M, Garlicki, M, Domagała, J, et al.Successful use of activated recombinant factor VII to control bleeding abnormalities in a patient with a left ventricular assist device. J Thorac Cardiovasc Surg. 2002;123:384385.
33.Miller, LW, Nelson, KE, Bostic, RR, et al.Hospital costs for left ventricular assist devices for destination therapy lower costs for implantation in the post-REMATCH era. J Heart Lung Transplant. 2006;25:778784.
34.Pagani, FD, Long, JW, Dembitsky, WP, Joyce, LD, Miller, LW. Improved mechanical reliability of the HeartMate XVE left ventricular assist system. Ann Thorac Surg. 2006;82:14131418.
35.Long, JW, Healy, AH, Rasmusson, BY, et al.Improving outcomes with long-term “destination” therapy using left ventricular assist devices. J Thorac Cardiovasc Surg. 2008;135:13531360.
36.Slaughter, MS, Sobieski, MA, Gallagher, C, Dia, M, Silver, MA. Low incidence of neurologic events during long-term support with the HeartMate XVE left ventricular assist device. Tex Heart Inst J. 2008;35:245249.
37.Feldman, AM, de Lissovoy, G, Bristow, MR, et al.Cost effectiveness of cardiac resynchronization therapy in the Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPANION) trial. J Am Coll Cardiol. 2005;46:23112321.
38.Yao, G, Freemantle, N, Calvert, MJ, et al.The long-term cost-effectiveness of cardiac resynchronization therapy with or without an implantable cardioverter-defibrillator. Eur Heart J. 2007;28:4251.
39.Pagani, FD, Miller, LW, Russell, SD, et al.Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312321.
40.Boyle, A, Teuteberg, J, Ascheim, DD, et al.Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transplant. 2011;30:402407.
41.Kirklin, JK, Naftel, DC, Kormos, RL, et al.Fifth INTERMACS annual report: Risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32:141156.
42.Slaughter, MS, Rogers, JG, Milano, CA, et al.HeartMate II Investigators. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:22412251.
43.Park, SJ, Milano, CA, Tatooles, AJ, et al.Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail. 2012;5:241248.
44.Ascheim, DD, Gelijns, AC, Rose, EA. Innovation with experience using implantable left ventricular assist devices. Circ Heart Fail. 2009;2:12.
45.Tunis, SR, Pearson, SD. Coverage options for promising technologies: Medicare's ‘coverage with evidence development’. Health Aff (Millwood). 2006;25:12181230.
46.Campbell, B. NICE medical technology guidance: Devices and diagnostics. Heart. 2011;97:17941795.
47.Campbell, B. The NICE Medical Technologies Advisory Committee and medical technologies guidance. Heart. 2011;97:674675.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Technology Assessment in Health Care
  • ISSN: 0266-4623
  • EISSN: 1471-6348
  • URL: /core/journals/international-journal-of-technology-assessment-in-health-care
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed