Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T12:50:03.726Z Has data issue: false hasContentIssue false

A first exploration of the economic consequences of an autonomous surgical robot for lateral skull base surgery: an early health technology assessment

Published online by Cambridge University Press:  31 July 2023

Cindy H. Nabuurs*
Affiliation:
Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands Rare Cancers, Radboud Institute for Health Sciences, Nijmegen, The Netherlands Academic Alliance Skull Base Pathology Radboudumc – MUMC+, Nijmegen, The Netherlands
Wietske Kievit
Affiliation:
Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands Rare Cancers, Radboud Institute for Health Sciences, Nijmegen, The Netherlands Academic Alliance Skull Base Pathology Radboudumc – MUMC+, Nijmegen, The Netherlands Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
Lex Haegens
Affiliation:
Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
Janneke P.C. Grutters
Affiliation:
Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands Department of Operating Rooms, Radboud University Medical Center, Nijmegen, The Netherlands
Henricus P.M. Kunst
Affiliation:
Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands Rare Cancers, Radboud Institute for Health Sciences, Nijmegen, The Netherlands Academic Alliance Skull Base Pathology Radboudumc – MUMC+, Nijmegen, The Netherlands Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
*
Corresponding author: Cindy H. Nabuurs; Email: cindy.nabuurs@radboudumc.nl

Abstract

Objectives

Lateral skull base procedures, such as translabyrinthine approach (TLA), are challenging. An autonomous surgical robot might be a solution to these challenges. Our aim is to explore in an early phase the economic consequences of an autonomous surgical robot compared with conventional TLA.

Methods

An early decision analytic model was constructed in order to perform a step-wise threshold analyses and a sensitivity analysis to analyze the impact of the several factors on the incremental costs.

Results

Using surgical robot results in incremental costs – EUR 5,562 per procedure – compared to conventional TLA. These costs are most reduced by higher number of procedures, followed by lower price of the robot, saved operation time, and reduced risk of complication, respectively.

Conclusions

The incremental costs of using an autonomous surgical robot can be decreased by choosing applications with a high turnover rate, a long operation time, and a high complication rate.

Type
Assessment
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Operaties in het ziekenhuis; soort opname, leeftijd en geslacht, 1995–2010. Statline of CBS the Netherlands. Updated 5 February. 2014. Available from: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/80386NED/table?fromstatweb.Google Scholar
ten Tije, FA, Pauw, RJ, Bom, SJH, et al. Postoperative patient reported outcomes after cholesteatoma surgery. Otol Neurotol. 2022;43(5):e582e589. doi:10.1097/mao.0000000000003509.CrossRefGoogle ScholarPubMed
Khrais, T, Sanna, M. Hearing preservation surgery in vestibular schwannoma. J Laryngol Otol. 2006;120(5):366-370. doi:10.1017/s002221510600332x.CrossRefGoogle ScholarPubMed
Ryzenman, JM, Pensak, ML, Tew, JM Jr. Facial paralysis and surgical rehabilitation: A quality of life analysis in a cohort of 1,595 patients after acoustic neuroma surgery. Otol Neurotol. 2005;26(3):516521. doi:10.1097/01.mao.0000169786.22707.12.CrossRefGoogle Scholar
Tufarelli, D, Meli, A, Alesii, A, et al. Quality of life after acoustic neuroma surgery. Otol Neurotol. 2006;27(3):403409. doi:10.1097/00129492-200604000-00018.CrossRefGoogle ScholarPubMed
Bos, J, Steinbuch, M, Kunst, HPM. A new image guided surgical robot for precision bone sculpturing. Presented at: 16th International Conference of the European Society for Precision Engineering and Nanotechnology (EUSPEN 2016). 2016. Available from: https://research.tue.nl/nl/publications/a-new-image-guided-surgical-robot-for-precision-bone-sculpturing(b35a6610-342b-4225-b90c-6d4694ff3966).html.Google Scholar
Dillon, NP, Balachandran, R, Siebold, MA, et al. Cadaveric testing of robot-assisted access to the internal auditory canal for vestibular schwannoma removal. Otol Neurotol. 2017;38(3):441447. doi:10.1097/mao.0000000000001324.CrossRefGoogle Scholar
Couldwell, WT, MacDonald, JD, Thomas, CL, et al. Computer-aided design/computer-aided manufacturing skull base drill. Neurosurg Focus. 2017;42(5):E6. doi:10.3171/2017.2.Focus16561.CrossRefGoogle Scholar
Danilchenko, A, Balachandran, R, Toennies, JL, et al. Robotic mastoidectomy. Otol Neurotol. 2011;32(1):1116. doi:10.1097/MAO.0b013e3181fcee9e.CrossRefGoogle ScholarPubMed
Hummelink, S, Gerrits, JGW, Schultze Kool, LJ, et al. The merits of decision modelling in the earliest stages of the IDEAL framework: An innovative case in DIEP flap breast reconstructions. J Plast Reconstr Aesthet Surg. 2017;70(12):16961701. doi:10.1016/j.bjps.2017.07.011.CrossRefGoogle ScholarPubMed
House, JW, Brackmann, DE. Facial nerve grading system. Otolaryngol Head Neck Surg. 1985;93(2):146147. doi:10.1177/019459988509300202.CrossRefGoogle ScholarPubMed
Brackmann, DE, Cullen, RD, Fisher, LM. Facial nerve function after translabyrinthine vestibular schwannoma surgery. Otolaryngol Head Neck Surg. 2007;136(5):773777. doi:10.1016/j.otohns.2006.10.009.CrossRefGoogle ScholarPubMed
Mass, SC, Wiet, RJ, Dinces, E. Complications of the translabyrinthine approach for the removal of acoustic neuromas. Arch Otolaryngol Head Neck Surgery. 1999;125(7):801804.CrossRefGoogle ScholarPubMed
Moffat, DA, Lloyd, SK, Macfarlane, R, et al. Outcome of translabyrinthine surgery for vestibular schwannoma in neurofibromatosis type 2. Br J Neurosurg. 2013;27(4):446453. doi:10.3109/02688697.2013.771143.CrossRefGoogle ScholarPubMed
Schwartz, MS, Kari, E, Strickland, BM, et al. Evaluation of the increased use of partial resection of large vestibular schwanommas: Facial nerve outcomes and recurrence/regrowth rates. Otol Neurotol. 2013;34(8):14561464. doi:10.1097/MAO.0b013e3182976552.CrossRefGoogle ScholarPubMed
Nederland, Z. Richtlijn voor het uitvoeren van economische evaluaties in de gezondheidszorg; 2016.Google Scholar
Nederland, Z. Richtlijn voor het uitvoeren van economische evaluaties in de gezondheidszorg (verdiepingsmodules); 2016.Google Scholar
Consumer price indices. 2021. Updated 8 November 2022. Available from: https://opendata.cbs.nl/statline/#/CBS/en/dataset/83131ENG/table?fromstatweb.Google Scholar
Gait, C, Frew, EJ, Martin, TP, Jowett, S, Irving, R. Conservative management, surgery and radiosurgery for treatment of vestibular schwannomas: A model-based approach to cost-effectiveness. Clin Otolaryngol. 2014;39(1):2231. doi:10.1111/coa.12205.CrossRefGoogle ScholarPubMed
Godefroy, WP, Hastan, D, van der Mey, AG. Translabyrinthine surgery for disabling vertigo in vestibular schwannoma patients. Clin Otolaryngol. 2007;32(3):167172. doi:10.1111/j.1365-2273.2007.01427.x.CrossRefGoogle ScholarPubMed
Nederland, Z. Ziektelast in de praktijk - De theorie en praktijk van het berekenen van ziektelast bij pakketbeoordelingen; 2018.Google Scholar
Raad voor de Volksgezondheid en Zorg aan de minister van Volksgezondheid WeS. Zinnige en duurzame zorg; 2006.Google Scholar
Nederland, Z. Kosteneffectiviteit in de praktijk; 2012.Google Scholar
Hirst, A, Philippou, Y, Blazeby, J, et al. No surgical innovation without evaluation: Evolution and further development of the IDEAL framework and recommendations. Ann Surg. 2019;269(2):211220. doi:10.1097/sla.0000000000002794.CrossRefGoogle ScholarPubMed
Ferri, GG, Modugno, GC, Pirodda, A, et al. Conservative management of vestibular schwannomas: An effective strategy. Laryngoscope. 2008;118(6):951957. doi:10.1097/MLG.0b013e31816a8955.CrossRefGoogle ScholarPubMed
Hajioff, D, Raut, VV, Walsh, RM, et al. Conservative management of vestibular schwannomas: Third review of a 10-year prospective study. Clin Otolaryngol. 2008;33(3):255259. doi:10.1111/j.1749-4486.2008.01705.x.CrossRefGoogle ScholarPubMed
Carlson, ML, Habermann, EB, Wagie, AE, et al. The changing landscape of vestibular schwannoma management in the United States—A shift toward conservatism. Otolaryngol Head Neck Surg. 2015;153(3):440446.CrossRefGoogle ScholarPubMed
Conley, GS, Hirsch, BE. Stereotactic radiation treatment of vestibular schwannoma: Indications, limitations, and outcomes. Curr Opin Otolaryngol Head Neck Surg. 2010;18(5):351356. doi:10.1097/MOO.0b013e32833c71a2.CrossRefGoogle ScholarPubMed
Klijn, S, Verheul, JB, Beute, GN, et al. Gamma knife radiosurgery for vestibular schwannomas: Evaluation of tumor control and its predictors in a large patient cohort in The Netherlands. J Neurosurg. 2016;124(6):16191626. doi:10.3171/2015.4.Jns142415.CrossRefGoogle Scholar
Kirwin, E, Meacock, R, Round, J, Sutton, M. The diagonal approach: A theoretic framework for the economic evaluation of vertical and horizontal interventions in healthcare. Soc Sci Med. 2022;301:114900. doi:10.1016/j.socscimed.2022.114900.CrossRefGoogle Scholar