Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-7wlv9 Total loading time: 0.507 Render date: 2022-05-20T23:02:39.089Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Effects of plant extracts and oil emulsions on the maize cob borer Mussidia nigrivenella (Lepidoptera: Pyralidae) in laboratory and field experiments

Published online by Cambridge University Press:  16 December 2009

Komi Agboka*
Affiliation:
International Institute of Tropical Agriculture, 08 BP 0932, Tripostal, Cotonou, Republic of Benin Georg-August-University Goettingen, Agricultural Entomology, Grisebachstrasse 6, 37077Goettingen, Germany
Agbodzavu K. Mawufe
Affiliation:
University of Lomé, Ecole Supérieure d'Agronomie, BP 1515, Lomé, Togo
Manuele Tamò
Affiliation:
International Institute of Tropical Agriculture, 08 BP 0932, Tripostal, Cotonou, Republic of Benin
Stefan Vidal
Affiliation:
Georg-August-University Goettingen, Agricultural Entomology, Grisebachstrasse 6, 37077Goettingen, Germany
*

Abstract

Aqueous extracts of Tephrosia vogelii and Hyptis suaveolens, and of oils of Azadirachta indica and Jatropha curcas, as well as the pesticide Furadan 5G were evaluated for their insecticidal activity against the maize cob borer Mussidia nigrivenella Ragonot in laboratory and field experiments. In general, treated plants had a strong deterrent effect on ovipositing M. nigrivenella. The oviposition deterrence index was highest with neem oil at both concentrations, J. curcas at 5% and H. suaveolens at 20%. In addition, neem and Jatropha oils adversely affected egg hatch; it decreased with an increase in concentrations of oil emulsions and varied between 3 and 25.5% for neem and 6 and 16% for J. curcas. The lethal concentration 50 values calculated were 1.3 and 0.8%, respectively, for neem and J. curcas. By contrast, larval survival was not affected by the oil treatments. In the field, Furadan, neem and J. curcas oils significantly reduced the number of M. nigrivenella larvae by 16–49.2%, while aqueous extracts of T. vogelii and H. suaveolens were similar to the emulsified water control. The treatments did not significantly influence cob weight, and only neem oil at both concentrations and Furadan significantly reduced cob damage and consequently grain losses. These results showed that oil emulsions of A. indica and J. curcas oils act not only as an oviposition deterrent but also as ovicides. The prospects for possible inclusion of botanicals into integrated M. nigrivenella control in maize cropping systems are discussed.

Type
Research Paper
Copyright
Copyright © ICIPE 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adebowale, K. O. and Adedire, C. O. (2006) Chemical composition and insecticidal properties of underutilized Jatropha curcas seed oil. African Journal of Biotechnology 5, 901906.Google Scholar
Akhtar, Y. and Isman, M. B. (2003) Larval exposure to oviposition deterrents alters subsequent oviposition behaviour in generalist Trichoplusia ni and specialist, Plutella xylostella moths. Journal of Chemical Ecology 29, 18531870.CrossRefGoogle ScholarPubMed
Akhtar, Y., Yeoung, Y. R. and Isman, M. B. (2008) Comparative bioactivity of selected extracts from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars, Trichoplusia ni and Pseudaletia unipuncta. Phytochemical 7, 7788.CrossRefGoogle Scholar
Anonymous (1999) Fiches Internationales de Sécurité Chimique. ICSC: 0944, Préparée dans le cadre de la coopération entre le Programme International sur la Sécurité Chimique et la Commission Européenne.Google Scholar
Atchall, P. (1999) Intérêt agro-écologique du pourghère (Jatropha curcas L.) et étude des conditions d'extraction de son huile par voie humide en milieu aqueux. Mémoire d'ingénieur agronome, ESA/UL, Lomé. 51 pp.Google Scholar
Bekele, A. J., Obeng-Ofori, D. and Hassanali, A. (1997) Evaluation of Ocimum kenyense (Ayobangira) as source of repellent, toxicants, and protectants in storage against three major stored products insect pests. Journal of Applied Entomology 121, 169173.CrossRefGoogle Scholar
Boateng, B. A. and Kusi, F. (2008) Toxicity of Jatropha seed oil to Callosobrochus maculatus (Coleoptera: Bruchidae) and its parasitoid Dinarmus basalis (Hymenoptera: Pteromalidae). Journal of Applied Science Research 4, 945951.Google Scholar
Bosque-Pérez, N. A. and Mareck, J. H. (1990) Distribution and species composition of lepidopterous maize borers in southern Nigeria. Bulletin of Entomological Research 80, 363368.CrossRefGoogle Scholar
Bruce, Y. A., Gounou, S., Chabi-Olaye, A., Smith, H. and Schulthess, F. (2004) The effect of neem (Azadirachta indica A. Juss) oil on oviposition, development and reproductive potentials of Sesamia calamistis Hampson (Lepidoptera: Noctuidae) and Eldana saccharina Walker (Lepidoptera: Pyralidae). Agricultural and Forest Entomology 6, 110.CrossRefGoogle Scholar
Carpinella, C., Ferrayoli, C., Valladares, G., Defago, M. and Palacios, S. (2002) Potent limonoid insect antifeedant from Melia azedarach. Bioscience, Biotechnology and Biochemistry 66, 17311736.CrossRefGoogle ScholarPubMed
Fatope, M. O., Nuhu, A. M., Mann, A. and Takeda, Y. (1995) Cowpea weevil bioassay: a simple prescreen for plants with grain protectant effects. International Journal of Pest Management 41, 8486.CrossRefGoogle Scholar
Gaskins, M. H., White, G. A., Martin, F. W., Delfel, N. E., Rupel, E. G. and Barness, D. K. (1972) Tephrosia vogelii: a source of rotenoids for insecticidal use. USDA Technical Bulletin, No. 1445.Google Scholar
Greenberg, S. M., Showler, A. T. and Liu, T.-X. (2005) Effect of neem-based insecticides on beet armyworm (Lepidoptera: Noctuidae). Insect Science 12, 1723.CrossRefGoogle Scholar
Hossain, M. B. and Poehling, H.-M. (2006) Effects of neem-based insecticide on different immature life stages of the leafminer Liriomyza sativae on tomato. Phytoparasitica 34, 360369.CrossRefGoogle Scholar
Immaraju, J. A. (1998) The commercial use of azadirachtin and its integration into viable pest control programmes. Pesticide Science 54, 285289.3.0.CO;2-E>CrossRefGoogle Scholar
Isman, M. B. (1993) Growth inhibitory and antifeedant effects of azadirachtin on six noctuids of regional economic importance. Pesticide Science 38, 5763.CrossRefGoogle Scholar
Isman, M. B. (1996) Some target and non-target effects of neem insecticides. International Neem Conference, 4–9 February, QLD, Australia.Google Scholar
Isman, M. B. (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51, 4566.CrossRefGoogle ScholarPubMed
Juan, A. and Sans, A. (2000) Antifeedant activity of fruit and seed extracts of Melia azadirachta on larvae of Sesamia nonagrioides. Phytoparasitica 28, 311319.CrossRefGoogle Scholar
Kaufmann, T. (1983) Behavioural biology, feeding habits, and ecology of three species of maize stem borers: Eldana saccharina (Lepidoptera: Pyralidae), Sesamia calamistis and Busseola fusca (Noctuidae) in Ibadan Nigeria, West Africa. Journal of Georgia Entomological Society 18, 259272.Google Scholar
Lale, N. E. S. and Abdulrahman, H. T. (1999) Evaluation of neem (Azadirachta indica A. Juss) seed oil obtained by different methods and neem powder for the management of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in stored cowpea. Journal of Stored Products Research 35, 135143.CrossRefGoogle Scholar
Lowery, D. T. and Isman, M. B. (1993) Antifeedant activity of extracts from neem, Azadirachta indica, to strawberry aphid, Chaetosiphon frangaefolii. Journal of Chemical Ecology 19, 17611773.CrossRefGoogle Scholar
Machocho, A. K., Lwande, W., Jondico, J. I., Moreka, L. V. C. and Hassanali, A. (1995) Three new flavonoids from the root of Tephrosia emoroides and their antifeedant activity against the larvae of the spotted stalk borer Chilo partellus Swinhoe. International Journal of Pharmacognosy 33, 222227.CrossRefGoogle Scholar
Morris, J. B. (1999) Legume genetic resources with novel ‘value added’ industrial and pharmaceutical use, pp. 196201. In Perspectives on New Crops and New Uses (edited by Janick, J.). ASHS Press, Alexandria, Virginia.Google Scholar
Moyal, P. (1988) Les foreurs du maïs en zone des savanes en Côte d'Ivoire. Collection Etudes et Thèses, ORSTOM, Paris, France.Google Scholar
Moyal, P. and Tran, M. (1991 a) Cob borer Mussidia nigrivenella (Lépidoptera; Pyralidae) of maize in Ivory Coast. I. Morphological and biological data. Insect Science and Its Application 12, 209214.Google Scholar
Moyal, P. and Tran, M. (1991 b) Cob borer Mussidia nigrivenella (Lépidoptera; Pyralidae) of maize in Ivory Coast. II. Ecological data. Insect Science and Its Application 12, 215223.Google Scholar
Mugoya, C. F. and Chinsembu, K. C. (1995) Potential of Tephrosia vogelii water extracts for controlling maize stalk bores and maize streak virus in Zambia, pp. 121127. In Proceeding of the 10th Meeting and Scientific Conference of the African Association of Insect Scientists, 5–10 September 1993, Mombara, Kenya.Google Scholar
Ndemah, R. and Schulthess, F. (2002) Yield of maize in relation to natural field infestations and damage by lepidopterous borers in the forest and forest/savannah transition zones of Cameroon. Insect Science and Its Application 22, 183193.Google Scholar
Ogendo, J. O., Kostyukovsky, M., Ravid, U., Matasyoh, J. C., Deng, A. L., Omolo, E. O., Kariuki, S. T. and Shaaya, E. (2008) Bioactivity of Ocimum gratissimum L. oil and two of its constituents against five insect pests attacking stored food products. Journal of Stored Products Research 44, 328334.CrossRefGoogle Scholar
Olaifa, J. I. and Adenuga, A. O. (1988) Neem products for protecting field cassava from grasshopper damage. Insect Science and Its Application 9, 267270.Google Scholar
Perry, L. M. (1980) Medicinal Plants of East and Southeast Asia. MIT Press, Cambridge, Massachusetts.Google Scholar
Ratnadass, A., Cissé, B., Diarra, D., Mengual, L., Taneja, S. L. and Thiero, C. A. T. (1997) Perspective de lutte biointensive des foreurs des tiges de sorgho en Afrique de l'ouest. Insect Science and Its Application 17, 227233.Google Scholar
Schmutterer, H. (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology 35, 271297.CrossRefGoogle ScholarPubMed
Schulz, W. D. and Schlüter, U. (1983) Structural damages caused by neem in Epilachna varivestis. A summary of histological and ultrastructural data. Tissues affected in adults, pp. 237253. Natural pesticides from the neem tree and other tropical plants, Proceedings of the Second International Neem Conference, Rauischholzhausen, Germany (edited by Schmutterer, R. and Ascher, K. R. S.). GTZ, Germany.Google Scholar
Seljåsen, R. and Meadow, R. (2006) Effect of neem on oviposition and egg and larval development of Mamestra brassicae L.: dose response, residual activity, repellent effects and systemic activity in cabbage plants. Crop Protection 25, 338345.CrossRefGoogle Scholar
Sémeglo, A. K. (1997) Etude comparative de la bioecologie de trois Noctuidae foreurs de tige de céréales (Sesamia calamistis Hampson, S. poephaga Tams and Bowden and Busseola fusca Fuller) sur Zea mays et quelques Poaceae sauvages. Mémoires Ingenieur Agronome, University of Lomé.Google Scholar
Sétamou, M. (1996) Ecology of the insect pests of maize with special reference to Mussidia nigrivenella (Lepidoptera: Pyralidae) and the interaction with the aflatoxin producing fungus Aspergillus flavus. MSc thesis, University of Cape Coast, Ghana.Google Scholar
Sétamou, M. (1999) Ecology and pest status of Mussidia nigrivenella Ragonot (Lepidoptera: Pyralidae), a cob borer of maize in West Africa. PhD thesis, University of Hanover, Hanover, Germany. 140 pp.Google Scholar
Sétamou, M., Cardwell, K. F., Schulthess, F. and Hell, K. (1998) Effect of insect damage to maize ears, with special reference to Mussidia nigrivenella (Lepidoptera: Pyralidae), on Aspergillus flavus (Deuteromycètes: Monoliales) infection and aflatoxin production in maize before harvest in the republic of Benin. Journal of Economic Entomology 91, 433438.CrossRefGoogle Scholar
Sétamou, M., Schulthess, F., Bosque-Pérez, N. A., Poehling, H.-M. and Borgemeister, C. (1999) Bionomics of Mussidia nigrivenella (Lep.: Pyralidae) on three host plants. Bulletin of Entomological Research 89, 465471.CrossRefGoogle Scholar
Sétamou, M., Schulthess, F., Bosque-Pérez, N. A. and Thomas-Odjo, A. (1995) The effect of stem and cob borers on maize subjected to different nitrogen treatments with special reference to Sesamia calamistis Hampson (Lepidoptera: Noctuidae). Entomologia Experimentalis et Applicata 77, 205210.CrossRefGoogle Scholar
Sétamou, M., Schulthess, F., Poehling, H.-M. and Borgemeister, C. (2000) Monitoring and modeling of field infestation and damage by the maize ear borer Mussidia nigrivenella Ragonot (Lepidoptera: Pyralidae) in Benin, West Africa. Journal of Economic Entomology 93, 650657.CrossRefGoogle Scholar
Shanower, T., Schulthess, F. and Gounou, S. (1991) Distribution and abundance of some stem and cob borers in Benin. Plant Health Management Research Monograph 1. IITA, Ibadan.Google Scholar
Shelke, S. S., Jakhav, L. D. and Salunkhe, G. N. (1987) Ovicidal action of some vegetable oils and extract in the storage pest of potato, Phthorimaea operculella Zell. Biovigyanam 13, 4041.Google Scholar
Showler, A. T., Greenberg, S. M. and Arnason, J. T. (2004) Deterrent effect of four neem based formulations on gravid female of boll weevil feeding and oviposition on cotton squares. Journal of Economic Entomology 97, 414421.CrossRefGoogle Scholar
Siddiqui, K. H., Sarup, P. and Marwaha, K. K. (1990) Effect of different neem products on mass rearing of the maize stalk borer, Chilo partellus (Swinhoe) in artificial diet. Journal of Entomological Research 14, 811.Google Scholar
Silvie, P. (1993) Nouvelles données sur Mussidia nigrivenella Ragonot (Lepidoptera: Pyralidae) au Togo. Insect Science and Its Application 14, 643649.Google Scholar
Simmonds, M. S. J., Blaney, W. M., Delle Monache, R. and Marini Bettolo, G. B. (1990) Insect antifeedant activity associated with compounds isolated from species of Lonchocarpus and Tephrosia. Journal of Chemical Ecology 16, 36563680.CrossRefGoogle Scholar
Singh, S. and Singh, R. P. (1998) Neem (Azadirachta indica) seed kernel extracts and azadirachtin as oviposition deterrents against the melon fly (Bactrocera curcubitae) and the oriental fruit fly (Bactrocera dorsalis). Phytoparasitica 26, 191197.CrossRefGoogle Scholar
Thoeming, G., Borgemeister, C., Sétamou, M. and Poehling, H.-M. (2003) Systemic effects of neem on Western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Economic Entomology 96, 817825.CrossRefGoogle Scholar
Udayagiri, S. and Mason, C. E. (1995) Host plant constituents as oviposition stimulants for a generalist herbivore: European corn borer. Entomologia Experimentalis et Applicata 76, 5965.CrossRefGoogle Scholar
Webb, R. E., Hinebaugh, M. A., Lindquist, R. K. and Jacobson, M. (1983) Evaluation of aqueous solution of neem seed extract against Liriomyza sativae and L. trifolii (Diptera: Agromyzidae). Journal of Economic Entomology 76, 357362.CrossRefGoogle Scholar
Weintraub, P. G. and Horowitz, A. R. (1997) Systemic effects of a neem insecticide on Liriomyza huidobrensis larvae. Phytoparasitica 25, 283289.CrossRefGoogle Scholar
Zabel, A., Kostic, M., Manojlovic, B., Stankovic, S. and Tomasi, O. (1999) Neem oil antifeedancy and toxicity to gypsy moth. Phytoparasitica 28, 8790.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of plant extracts and oil emulsions on the maize cob borer Mussidia nigrivenella (Lepidoptera: Pyralidae) in laboratory and field experiments
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effects of plant extracts and oil emulsions on the maize cob borer Mussidia nigrivenella (Lepidoptera: Pyralidae) in laboratory and field experiments
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effects of plant extracts and oil emulsions on the maize cob borer Mussidia nigrivenella (Lepidoptera: Pyralidae) in laboratory and field experiments
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *